首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Jensen, J. B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. 1997 (September): The Baltic Ice Lake in the southwestern Baltic: sequence-, chrono- and biostratigraphy. Boreas , Vol. 26, pp. 217–236. Oslo. ISSN 0300–9483.
This multidisciplinary study focuses on late-glacial deposits in the Mecklenburg Bay -Arkona Basin area. The sequence stratigraphical method has been used on shallow seismic and lithological data, in combination with biostratigraphical work and radiocarbon dating. Glacial-till deposits underlie sediments from two Baltic Ice Lake phases. Varved clay deposits from the initial phase cover the deepest parts of the basins. A prograding delta is observed at the western margin of the Arkona Basin, prograding from the Darss Sill area. The delta system is possibly related to a highstand dated at 12.8 ka. A maximum transgression level around 20 m below present sea level (b.s.l.) is inferred, followed by a drop in water level and formation of lowstand features. The final ice lake phase is characterized by a new transgression. The transgression maximum as observed in the Mecklenburg Bay is represented by transgressive and highstand deltaic deposits. These also indicate a maximum shore level of 20 m b.s.l. The deltaic sediments that contain macroscopic plant remains and diatoms have yielded Younger Dryas ages. Mapping of the late-glacial morphology of the Darss Sill area reveals a threshold at 23 to 24 m b.s.l. This means that the Baltic Ice Lake highstand phases inundated the Darss Sill, which implies that the westernmost extension of the Baltic Ice Lake reached as far as Kiel Bay. Forced regressive coastal deposits at the western margin of the Arkona Basin mark a lowstand level of around 40 m b.s.l. caused by the final drainage of the Baltic Ice Lake. The lowstand deposits predate lacustrine deposits from the Ancylus Lake, which date to approximately 9.6 ka BP.  相似文献   

2.
Mt. Kroppefjall is situated just south of the Middle Swedish (Younger Dryas) ice-marginal zone. Its abundance of lake basins makes it very suitable for detailed shore displacement studies close to the Younger Dryas ice margin. Altogether 12 lakes at altitudes between 157 and 78 m were studied and all but one situated above the marine limit contained marine sediments. The dating of their isolation from the sea resulted in a shore displacement curve from c. 11,200 to c. 98M)BP. The relative uplift almost ceased between 10,900 and 10,300 BP, which is mainly related to an ice readvance in the Lake Vanern basin. This period of balance between uplift and sea level rise was preceded by a relative uplift rate of 5 m/lW yr and followed by as high rates as 7–8 m/100 yr, possibly caused by a delayed uplift effect and perhaps also a local fall in sea level caused by the rapidly receding ice margin. The time difference between the formation of two delta surfaces at Odskolts Moar is estimated at 60&800 years. Shoreline diagrams along the Swedish west and east coasts, mainly based on a number of shore displacement curves, reveal large anomalies that are believed to have been caused by dammings and drainages of the Baltic basin. The southwards extrapolated shorelines indicate that the bedrock threshold in the Oresund Strait, between Denmark and Sweden, functioned as the outlet threshold for the Baltic Ice Lake during its dammed stages, while the erosion of the Store Balt and Darss Sill straits began at the culmination of the Ancylus transgression and continued during the rapid IS20 m Ancylus regression.  相似文献   

3.
Biostratigraphical and palaeoecological analyses of cores along a transect from Femer Belt to the Arkona Basin reveal that North Sea waters began to enter the western Baltic Sea between 8600 and 8400 calibrated years BP. Studies of diatoms indicate that Mecklenburg Bay was characterised by slightly brackish-water conditions between 8400 and 8000 cal. years BP. At around 8000 cal. years BP increasing salinity is indicated by a strong dominance of the diatoms Paralia sulcata and Dimeregramma minor. Some centuries later another diatom assemblage appeared and became dominant in Mecklenburg Bay. This assemblage includes Hyalinella lateripunctata and Pravifusus hyalinus species typical of shallow water areas along the Atlantic coast today. At this time the first marine molluscs made their appearance. The oldest shell of a marine mollusc found in our material is dated to 7600 cal. years BP. The associated assemblage that includes adult specimens of the gastropod Aporrhais pespelicani indicates higher salinities than today.During the Littorina Sea stage a marine diatom flora with P. sulcata, Catenula adhaerens and D. minor crossed the Darss Sill and became widely distributed in the Arkona Basin, Pomeranian Bay and the Baltic Sea proper. In contrast, taxa indicative of the Hyalinella lateripunctata/P. hyalinus assemblage are only found west of the Darss Sill in Femer Belt and Mecklenburg Bay. Apparently, the Darss Sill threshold has been acting as an important salinity border from around 7800 cal. years BP until today.  相似文献   

4.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

5.
The Fehmarn Belt is a key area for the Late Pleistocene and Holocene development of the Baltic Sea as it was a passage for marine and fresh water during its different stages. The pre‐Holocene geological development of this area is presented based on the analysis of seismic profiles and sedimentary gravity cores. Late Pleistocene varve sediments of the initial Baltic Ice Lake were identified. An exceptionally thick varve layer, overlain by a section of thinner varves with convolute bedding in turn covered by undisturbed varves with decreasing thicknesses is found in the Fehmarn Belt. This succession, along with a change in varve geochemistry, represents a rapid ice‐sheet withdrawal and increasingly distal sedimentation in front of the ice margin. Two erosional unconformities are observed in the eastern Mecklenburg Bight, one marking the top of the initial Baltic Ice Lake deposits and the second one indicating the end of the final Baltic Ice Lake. These unconformities join in Fehmarn Belt, where deposits of the final Baltic Ice Lake are missing due to an erosional hiatus related to a lake‐level drop during its final drainage. After this lake‐level drop, a lowstand environment represented by river deposits developed. These deposits are covered by lake marls of Yoldia age. Tilting of the early glacial lake sediments indicates a period of vertical movements prior to the onset of the Holocene. Deposits of the earliest stages of the Baltic Sea have been exposed by ongoing erosion in the Fehmarn Belt at the transition to the Mecklenburg Bight.  相似文献   

6.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   

7.
Near-shore Baltic Ice Lake deposits in Fakse Bugt, southeast Denmark   总被引:1,自引:0,他引:1  
Shallow seismic, sedimentological and macrofossil data and AMS radiocarbon dates on terrestrial plant remains from submarine deposits in Fakse Bugt in the southwestern part of the Baltic Sea are presented. The sediments were deposited near the shore of the Baltic Ice Lake, mostly in barrier-lagoon environments, during two highstand episodes dated to around 12.5–12.2 14C ka BP and 10.6–10.3 ka BP. Coastal sediments from the highstands indicate maximum water levels of 13–15 m and 13 m below present sea level, respectively. During the first episode Salix polaris was widespread in the land area, and during the second episode Dryas octopetala and Betula nana were the most common woody plants. During the lowstand episode Betula pubescens woods dominated. The flora and fauna of the Baltic Ice Lake were rather diverse, reflecting the long and increasing distance to the margin of the Fennoscandian Ice Sheet. Calcium-carbonate-rich, mesotrophic water characterized the Baltic Ice Lake in Fakse Bugt.  相似文献   

8.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

9.
The coastal zone of Norrbotten, northern Sweden, was gradually inundated by the Ancylus Lake following the retreating ice margin and forming a highest coastline approximately 210 m above the present sea level. The succeeding shore displacement is reconstructed based on lithological investigations and radiocarbon datings of identified isolation sequences from 12 cored lake basins. The highest lake basins, along with two basins above the highest shoreline, suggest ice-free conditions already at 10 500 cal. yr BP. This is at least 500 years earlier than previously thought and implies rapid ice-sheet break-up in the Gulf of Bothnia. The shore displacement (RSL) curve represents a forced regression of successively decreasing rate through the Holocene, from 9 m/100 yr to 0.8 m/100 yr. During the first 1000-1200 years, the isostatic uplift is exponentially declining, followed by a constant uplift rate from c. 9500 cal. yr BP to 5500-5000 cal. yr BP. The last 5000 years seem to be characterized by a low but constant rebound rate. The development of the Ancylus Lake stage of the Baltic may also be discerned in the Norrbotten RSL curve, suggesting that the chronology of the Ancylus Lake stages may have to be revised. The Littorina transgression is also reflected by the RSL curve shape. In addition, a series of early to mid-Holocene beach terraces were OSL-dated to allow for comparison with the 14C-dated shore displacement curve. Interpretations of these ages and their relation to former sea levels were clearly more problematic than the dating of the lake basin isolations.  相似文献   

10.
Seismoacoustic profiles from the Arkona Basin show a late Pleistocene and Holocene succession of several distinct reflectors. The physical, sedimentological, mineralogical and geochemical properties of more than 30 sediment cores were analysed in order to assign these reflectors to specific sedimentary discontinuity layers. Additionally, AMS 14C data and biostratigraphic information were gathered. Based on this multi‐proxy approach, seven lithostratigraphic units (AI, AII, B to F) were distinguished. These consist of fine‐grained clay, silt and mud, and are separated from each other by thin basin‐wide traceable sandy layers (Sab‐Sef). The most sensitive parameter to mark the lithostratigraphic boundaries is the weight percentage of the grain‐size fraction >63μm. In addition, some of the quartz‐grain‐dominated sandy layers cause the strong reflection lines recorded in seismoacoustic profiles. The sandy layers are interpreted to reflect enhanced hydrodynamic energy induced by episodes of basin‐wide water‐level low‐stand conditions. These low stands resulted from water‐level drops that occurred frequently during the Baltic Sea's history and presumably affected the entire Baltic basin. The thick fine‐grained units AI, AII to F, in which coarser material is absent, represent water‐level high‐stands. We conclude that the units AI and AII are Baltic Ice Lake sediments deposited before and after the Billingen‐1 regression, respectively. We assign the most prominent sandy layer Sab to the final drainage of the Baltic Ice Lake (Billingen‐2), whereas the sandy layers between units B, C., D and E are related to the Yoldia Sea and Ancylus Lake regressions of the Baltic Sea's history. The uppermost fine‐grained unit F with its high organic carbon content contains marine sediments deposited after the Littorina Transgression. The macroscopically well‐visible sediment colour change from reddish/brown‐to‐grey, previously interpreted as a regional stratigraphic boundary, varies from core to core. It has been shown by our new data that this colour change has a diagenetic origin, and thus does not represent a stratigraphic boundary. Previous subdivisions therefore have to be revised.  相似文献   

11.
The Baltic basin within the circular Fennoscandian region of deglaciation updoming has a lenght axis that lies radially between the inner and outer hinge lines of the upwarped shore levels. Its first postglacial connection with the ocean, the Yoldia Sea stage, came into existence across Central Sweden in Närke in the beginning of the pre-Boreal time, Zone IV in forest history. The connection still prevailed during the Boreal Echineis Sea stage (earlier named by the author Rhabdonema Sea), because of the eustatic rise of the sea level, until the Subzone Vb in the forest history was reached. Thereafter, during the Subzone Vc, the threshold in Central Sweden was rapidly uplifted above sea level, as it happened to lie inside the younger inner hinge line at the very moment of its formation. Thus the Baltic water body converted into a lake, called the Ancylus Lake, which drained westward through an outlet channel at the place of the previous sound. After some 300 or 400 years the height of the lake already was so much as 13 m bis 14 m. Then, at the transition from Zone V to Zone VI in the forest history, this short-lived stage ended in a sudden drainage down to the level of the sea through the Belts in Denmark because of a crustal sinking in the outer part of the southwestern sector of the updoming area. A new transitional stage in the history of the Baltic, the Mastogloia Sea, set in to be followed, during the warm-climate maximum, by the Littorina Sea.  相似文献   

12.
Fourteen lake basins on and west of Mt. Billingen have been analysed with respect to different stratigraphic methods: pollen, diatoms, other microfossils, 14C datings, lithology, grain-size distribution and chemical characteristics. The aim has been to establish a well-dated pollen stratigraphy for the area in order to date when lakes west of Mt. Billingen were raised above sea level. Previous studies and results from the area have also been included in the study. Distance diagrams, with different tilting directions, have been constructed. A shore displacement curve from c . 11,300 to c . 9,300 B.P., based on the most probable tilting direction, shows a complex uplift picture. A rather low regression gradient (3–4 m/100 years) during c . 1,000 years was, at c . 10,200 B.P., followed by a distinctly increasing gradient (8–9 m/100 years) followed by a marked gradient decrease at c . 9,500 B.P. The latter was possibly caused by a distinct sea level transgression on the Swedish West Coast. Indications of a short transgression around 10,000 B.P. as well as the possibly complicated course of isolation of Lake Vänern from the sea are also discussed. Finally the shore displacement is related to the deglaciation of the area and the supposed two drainages of the Baltic Ice Lake.  相似文献   

13.
The deglaciation pattern at Mt. Billingen, within the Middle Swedish end moraine zone, and its relationship with dramatic water level changes in the Baltic Ice Lake is a classic topic of Swedish Quaternary Geology. Based on data west of Mt. Billingen, the authors (in two earlier papers) presented a stratigraphic model associated with this subject. This study is an attempt to test the model east of Mt. Billingen, i.e. inside the Baltic Ice Lake itself. Lake Mullsjon is situated 30 km southeast of the drainage area of the Baltic Ice Lake and within the final drainage zone. About 8 m of Late Weichselian sediments (mostly varved clay) were recovered from the lake and analysed from different stratigraphic viewpoints, including lithology, grainsize, varve chronology, and pollen. These analyses show that the site was deglaciated in the later part of the Allerød Chronozone. Shortly thereafter the first drainage of the Baltice Ice Lake took place but without isolating Lake Mullsjon. After a short period of disturbed sedimentation varved clay continued to form as the glacier receded for another 120 varve years until the onset of the Younger Dryas cooling, as registered both in the pollen and in the varve stratigraphies. After c. another 120 varve years our analyses suggest that the Baltic Ice Lake was dammed once again. About 230 varve years of further ice readvance followed west of Mt. Billingen, while the ice margin in the east was more or less stationary. Rapid melting set in, at first producing coarse varves, but soon the clay was thin-varved and fine. This continued for 140 varve years until suddenly the lake became isolated. At this isolation thick beds of silty-sandy deposits were deposited on the lake floor. The isolation is dated to 10,400–10,500 14C years B.P., which corresponds to the assumed age of the final drainage of the Baltic Ice Lake. It was also isolated at the same time as lakes (on the same isobase) situated 20 m lower, but west of Mt. Billingen, were raised above sea level. This strongly suggests that Lake Mullsjön was isolated as an effect of the drainage of the Baltic Ice Lake. Significant differences between the clay-varve and the 14C chronologies are also presented.  相似文献   

14.
The study aimed to investigate the value of freshwater littoral Cladocera (chydorids, Ophryoxus gracilis and Sida crystallina ) in stratigraphical studies of shore displacement of the Baltic Sea. Diatoms and Cladocera were analysed from a sediment core from Lake Ruokolampi (S Finland, 60°34'N, 27°26'E), where a brackish-water Baltic transgression (Littorina Sea) is clearly expressed by changes in lithology. The diatom flora indicates a development of the waterbody from an Ancylus Lake bay to a small lake that was subject to a brackish Littorina transgression followed by another small-lake stage. There was a rich chydorid fauna in the Ancylus Lake bay and the following small lake. Littoral Cladoceran diversity fell sharply at the onset of the brackish transgression; however, three species ( Alona rectangula, Alona affinis and Chydorus sphaericus s.l. ) appear to have been tolerant of the saline conditions. Concentrations of all species rose rapidly after the transgression. Littoral Cladocera appear to react to the inflow of brackish water as sensitively as the diatoms and may provide a valuable additional method for pinpointing Baltic Sea transgression and isolation events, especially in cases where the diatom and biostratigraphical evidence is not as clear as in the Ruokolampi sequence.  相似文献   

15.
During and after deglaciation, Lake Vättern developed from a proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL), into a brackish water body connecting the North Sea and the Baltic Sea, and finally into an isolated freshwater lake. Here we present geochemical and mineralogical data from a 70‐m composite sediment core recovered in southern Lake Vättern. Together with a radiocarbon age model of this core, we are able to delineate the character and timing of the different lake stages. In addition to a common mineralogical background signature seen throughout the sediment core, the proglacial sediments bear a calcite imprint representing ice‐sheet transported material from the limestone bedrock that borders the lake basin in the northeast. The proglacial fresh to brackish water transition is dated to 11 480±290 cal. a BP and is in close agreement with other regional chronologies. The brackish period lasted c. 300 years and was followed by a c. 1600 year freshwater period before the Vättern basin became isolated from the Initial Littorina Sea. Decreasing detrital input, increasing δ13C values and the appearance of diatoms in the upper 15 m of the sediment succession are interpreted as an overall increase in biological productivity. This mode of sedimentation continues until the present and is interpreted to mark the final isolation of the lake at 9530±50 cal. a BP. Consequently, the isolation of Lake Vättern was not an outcome of the Ancylus Lake regression, but rather because of ongoing continental uplift in the early Littorina period.  相似文献   

16.
青海巴颜喀拉山北麓古高位湖相沉积的分布与特征   总被引:3,自引:0,他引:3  
巴颜喀拉山北麓地区古湖岸线分布广泛,湖相沉积与湖成地貌发育。目前,在扎陵湖和鄂陵湖沿岸可清晰地划分出4级湖岸阶地、多级湖相沉积和古高位湖相沉积。古高位湖相沉积出露的最高海拔为4615m,分别高出现代扎陵湖水面328m、鄂陵湖水面346m;在扎陵湖和鄂陵湖谷地分布着多级湖岸堆积阶地或基座阶地、多级湖相沉积和古高位湖相沉积;在小野马岭、大野马岭、扎陵湖北等地的基岩山丘上,也发育有多级湖相沉积和古高位湖相沉积,其古高位湖相沉积高出现代扎陵湖和鄂陵湖湖面50~350m。巴颜喀拉山北麓古高位湖相沉积的形成时代可能为中更新世。  相似文献   

17.
The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains.  相似文献   

18.
Reconstructing ice‐lake histories is of considerable importance for understanding deglacial meltwater budgets and the role of meltwater reservoirs for sea‐level rise in response to climate warming. We used the latest data on chronology and ice‐sheet extents combined with an isostatically adjusted digital elevation model to reconstruct the development of proglacial lakes in the area of the Karelian ice stream complex of the Late Weichselian Scandinavian Ice Sheet on the East European Plain. We derived the deglacial ice lake development in seven time‐slices from 19 to 13.8 ka, assuming the individual ice‐marginal positions to be isochronous throughout the studied domain. Modelling is based on mapping of critical drainage thresholds and filling the depressions that are potentially able to hold meltwater. Such an approach underestimates the real dimensions of the ice lakes, because the role of erosion at the thresholds is not considered. Our modelling approach is sensitive to the (local) ice‐margin location. Our results prove the southward drainage of meltwater during the glacier extent maxima and at the beginning of deglaciation whereas rerouting to the west had taken place already around 17.5 ka, which is some 1.5 ka earlier than hitherto supposed. The total ice‐lake volume in the study area was lowest (~300 km3) during the maximum glacier extent and highest (~2000 km3) during the highstand of the Privalday Lake at c. 14.6 ka. At 14.6–14.4 ka, the Privalday Lake drained to the early Baltic Ice Lake. The released ~1500 km3 of water approximately corresponds to 20% of the early Baltic Ice Lake water volume and therefore it is unlikely that it was accommodated there. Thus, we argue that the additional meltwater drained through the Öresund threshold area between the early Baltic Ice Lake and the sea, becoming a part of the Scandinavian Ice Sheet's contribution to the Meltwater Pulse 1A event.  相似文献   

19.
An overstepped, concave‐eastward, barrier beach beneath Holocene mud in western Lake Ontario has been delineated by acoustic and seismic reflection profiles and piston cores, and related to Early Lake Ontario (ELO). The average ELO barrier depth below present mean lake level is 77.4 to 80.6 m, or about ?6 to ?2.8 m above present sea level. Trend surface analysis of Champlain Sea (Atlantic Ocean) marine limits defined the contemporaneous marine water surface, and projections of this surface pass ~25 m above the outlet sill of the Lake Ontario basin and extend to the ELO palaeo‐barrier, a unique sand and gravel deposit beneath western Lake Ontario. ELO was connected to the Champlain Sea above the isostatically rising outlet sill for up to three centuries after about 12.8 cal. ka BP, while the glacio‐isostatically depressed St. Lawrence River Valley was inundated by the Atlantic Ocean. During the period of this connection, ELO level was confluent with slowly rising sea level, and the lake constructed a transgressive beach deposit with washover surfaces. ELO remained fresh due to a high flux of meltwater inflow. The marine water level connection stabilized water level in ELO relative to its shore and facilitated shore erosion, sediment supply and barrier construction. Glacio‐isostatic uplift of the outlet sill, faster than sea‐level rise, lifted ELO above the Champlain Sea about 12.5 cal. ka. Shortly after, a hydrological deficit due mainly to a combination of diverted meltwater inflow and dry climate, well known from regional pollen studies, forced the lake into a lowstand. The lowstand stranded the barrier, which remains as evidence of sea level, the farthest inland in eastern North America north of the Gulf of Mexico at the time. The highest palaeo‐washover surface provides a sea‐level index point.  相似文献   

20.
The Late Pleistocene and Holocene glacial and postglacial sediments of the Baltic Sea basin are conventionally classified into units according to the so‐called Baltic Sea stages: Baltic Ice Lake, Yoldia Sea, Ancylus Lake and Litorina Sea. The Baltic Sea stages have been identified in offshore sediment cores by fundamentally different criteria, precluding detailed comparisons of the sediment units amongst different sea areas and studies. Here, long sediment cores and reflection seismic and pinger sub‐bottom profiles were studied from an offshore area in the Gulf of Finland, northern Baltic Sea. The strata are divided on the basis of sedimentological criteria into three allostratigraphical formations with subordinate allostratigraphical members and lithostratigraphical formations, following the combined allostratigraphical and lithostratigraphical (CUAL) approach. Sedimentological features are recommended as the primary stratigraphical classification criteria because they do not require the palaeoenvironmental inferences of salinity and water level that are inherent in the conventional classification practice. The presented stratigraphical division is proposed as a flexible template for future stratigraphical work on the Baltic Sea basin, whereby lower‐rank allounits and lithounits can be included and removed locally, while the alloformations will remain at the highest hierarchical level and guarantee regional correlatability. The stratigraphical division is compatible with international guidelines, facilitating communication to the wider scientific community and comparison with other similar basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号