首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
Summary Shore hardness has been used to estimate some mechanical and physical properties of rocks for many years. This study differs from previous studies in a way that it is directly oriented to rock cuttability. Two Shore hardness values (SH 1 andSH 2) and a coefficient of deformation value (K) have been measured for 30 different rock samples. In the first stage of the study, optimum specific energy values for 16 different rock samples obtained from full-scale cutting tests were correlated with the Shore hardness values of the same rock samples changingSH 1 values from 9 to 66 andSH 2 values from 25 to 83, with deformation coefficient values changing from 26 to 195. In the second stage, the performance of a roadheader used in the Kü?üksu (Istanbul) tunnel was recorded in detail and the instantaneous cutting rate of the machine was determined. Then, the relationship between Shore hardness values, deformation coefficient and the instantaneous cutting rate of the machine was determined for different formations encountered. It is concluded that there is a relationship between Shore hardness values, optimum specific energy and compressive strength, which may be used to estimate the rock cuttability and the instantaneous cutting rates of roadheaders within certain limits of reliability.  相似文献   

3.
Summary. This study relates textural properties to physical and mechanical properties of coarse grained sedimentary rocks of Permocarboniferous age. As an equivalent to rock texture the principle of geomechanical order is applied. The geomechanical order describes a rock as a function of its structural and compositional order which are derived from petrological analyses. Our results indicate that rock properties like density and porosity are stronger dependent on the structural order, while strength properties additionally depend on the compositional order. The ultrasonic wave velocity responds to both structural and compositional properties. These evidences imply that the geomechanical order is not an independent parameter but a variable function of structural or compositional features, which needs specification for correlation purposes to distinct physical and mechanical rock properties.  相似文献   

4.
Summary. Tunnel face and wall collapse are common during excavations performed by tunnel boring machines (TBMs) due to the difficulty of correctly identifying the properties of the excavated rock. This identification, however, can be simplified by using the cutting force to estimate rock strength, a method that has already proved quite successful in Japanese tunnel excavations. This paper summarizes knowledge relating to the cutting force obtained through tunnel excavation experience, and the relationship between rock strength and TBM operation is discussed. Although TBM operators rely on intuition to set the cutter head speed appropriately, this decision process represents a logical method of operation that takes advantage of the variable speed capability of the cutter head. Selection of appropriate support methods for the excavated face is also a critical issue in tunnel excavation. This selection process is based on the condition of the rock, which is difficult to determine quickly and accurately during tunnel excavation. The present paper uses the excavation of two tunnels to demonstrate that it is possible to assign rock mass classifications accurately based on rock strength when boring a uniform rock type. It is also shown that the rock mass can be classified from the rock strength normalized by the uniaxial compressive strength when boring through mixed rock types.  相似文献   

5.
6.
Summary. Because of its advantageous physical and mechanical characteristics, salt rock is considered an excellent host rock for nuclear waste disposal. Nuclear wastes in a salt rock repository will continue to emit radiation and thermal energy for decades after placement, resulting in a significant rise of the surrounding salt rock temperature. Consequently, study of the physical and mechanical characteristics of salt rock under different temperature conditions is essential to ensure the integrity of the salt rock repository and the safe isolation of nuclear wastes from the biosphere. Through a series of physical and mechanical tests on thenardite salt rock at different temperatures (ranging from 20 °C to 240 °C), it is found that the mechanical parameters have different reactions to a changing temperature. Tests show that the ultrasonic velocity of samples decreases with temperature increase and both the uniaxial compressive strength and axial strain increase with temperature, whereas the tangent modulus Et goes in an opposite direction. Meanwhile, the plastic strain increases gradually and strain-softening behavior of the samples becomes increasingly evident. In the pre-set angle shear tests, both the cohesion and internal friction angle increase with temperature. Results obtained in direct shear illustrate that both the peak shear strength and the ultimate shear strength increase with temperature. We conclude that the behavior of thenardite salt rock at high temperatures is still advantageous to the integrity of salt rock repository, assuring the safe isolation of nuclear wastes from the biosphere.  相似文献   

7.
Summary. The evaluation of the rock mass mechanical properties by the seismic reflection method and TBM driving is proposed for TBM tunnelling. The relationship between the reflection number derived from the three-dimensional seismic reflection method and the rock strength index (RSI) derived from TBM driving data is examined, and the methodology of conversion from the reflection number to the RSI is proposed. Furthermore a geostatistical prediction methodology to provide a three-dimensional geotechnical profile ahead of the tunnel face is proposed. The performance of this prediction method is verified by actual field data.  相似文献   

8.
为解决火山碎屑岩在钻进中易剥落、易崩塌的问题,探讨钻井液性能对火山碎屑岩崩解性的影响,以青海阿克楚克塞矿区火山碎屑岩为例,分析了其岩石样品的矿物成分,进行了岩石样品烘干和浸水循环实验,采用多元线性回归分析法分析了原1#、2#钻井液的主要参数和耐崩解性指数之间的关系。结果表明,钻井液的动塑比、静切力、失水量和漏斗黏度4项性能指标与火山碎屑岩崩解性的相关性可达83.37%,其中动塑比对火山碎屑岩崩解性的影响尤为显著。通过调整水解聚丙烯酰胺和褐煤树脂质量分数提高了钻井液的动塑比和稳定性,从而获得优选钻井液配方:水+4%膨润土+3% Na2CO3+0.1% NaOH+0.15% MV-CMC(中黏钠羧甲基纤维素)+0.5% LV-CMC(低黏钠羧甲基纤维素)+2% SPNH(褐煤树脂)+0.08% PHP(水解聚丙烯酰胺)。现场应用表明,钻进至429.00 m深度时使用优选钻井液孔底沉渣厚度较1#钻井液降低了89.7%,较2#钻井液降低了80.3%。  相似文献   

9.
10.
Summary ¶Rock zones containing a high fracture density and/or soft, low cohesion materials can be highly problematic when encountered during tunnel excavation. For example in the eastern Aar massif of central Switzerland, experiences during the construction of the Gotthard highway tunnel showed that heavily fractured areas within shear zones were responsible for overbreaks in the form of chimneys several metres in height. To understand and estimate the impact of the shear zones on rock mass behaviour, knowledge concerning the rock mass strength and deformation characteristics is fundamental. A series of laboratory triaxial tests, performed on samples from granite- and gneiss-hosted shear zones revealed that with increasing degree of tectonic overprint, sample strength decreases and rock behaviour shows a transition from brittle to ductile deformation. These trends may be explained by increasing fracture densities, increasing foliation intensity, increasing thickness of fine-grained, low cohesion fracture infill, and increasing mica content associated with the increasing degree of tectonic overprint. As fracture density increases and the influence of discrete, persistent discontinuities on rock mass strength decreases, behaviour of the test samples becomes more and more representative of rock mass behaviour, i.e. that of a densely fractured continuum. For the purpose of numerical modeling calculations, the shear zones may be subdivided with respect to an increasing fracture density, foliation intensity and mica content into a strongly foliated zone, a fractured zone and a cohesionless zone, which in turn exhibit brittle, brittle-ductile and ductile rock mass constitutive behaviour, respectively.Received December 17, 2001; accepted January 9, 2003 Published online April 29, 2003  相似文献   

11.
温森  周书宇  盛桂琳 《岩土力学》2019,40(7):2628-2636
TBM掘进经常遇到复合岩层,在该地层中施工对滚刀破岩非常不利。为了提高掘进效率,降低工程造价,开展复合岩层滚刀破岩效率研究很有必要。鉴于此,采用滚刀岩机作用综合试验台对砂岩、花岗岩复合(复合比例为4(25) 6)而成的岩层进行5组刀间距下3种贯入度的3把滚刀同步旋转切割试验;试验过程中监测破岩总法向力、总扭矩,并分别收集两种岩石的岩渣进行筛分、称重;依据试验结果分析不同刀间距、贯入度下的法向力、扭矩及比能的关系。研究表明:不同刀间距时,平均法向力、平均扭矩随贯入度的增加而增大但两者的增加趋势不同,即平均法向力随着贯入度的增加几乎呈直线增大,而平均扭矩随着贯入度的增加其递增趋势减小;不同贯入度下存在不同的最优刀间距;砂岩、花岗岩切割轨迹长度比例为4:6时刀间距与贯入度的比值在14左右,破岩效率最高。  相似文献   

12.
胜利油区古近系地层水性质对储层物性的影响   总被引:2,自引:0,他引:2  
以胜利油区古近系为例,利用数学统计方法和镜下微观资料,探讨了研究区古近系地层水的分布和演化特征,阐述了地层水对储层物性产生影响的机理。对油区内主要凹陷地层水资料和储层物性之间的统计分析表明,在同一沉积盆地中,受沉积环境影响的地层水是影响碎屑岩储层成岩作用最根本的因素,它在纵向和横向分布上的规律性影响着储层物性演变。进而总结了地层水性质和碎屑岩储层物性之间的4种对应关系,得出根据地层水矿化度、碳酸盐含量的高低和储层物性的优劣可以判断储层成岩环境和物性演化历史的认识。  相似文献   

13.
14.
我国开发煤制醇醚能源综述   总被引:1,自引:0,他引:1  
我国能源的发展方向应在坚持可持续发展战略前提下,走以煤炭为主,其他资源为辅的能源结构之路。基于我国煤炭资源丰富,为确保能源安全供应,积极利用煤炭资源转化为汽车燃料——甲醇、二甲醚(每3.5t煤可生产2t甲醇),提高煤炭企业的效益。大范围推广添加一定比例甲醇的汽油或完全使用甲醇代替车用燃料,改变中国的汽车能源结构乃解决本世纪中国能源问题的重要途径。目前,我国的醇、醚燃料已研究成熟,正大力开发,推广应用。  相似文献   

15.
对比研究了古尔班通古特沙漠与绿洲交错带8种土地利用类型的土壤特性变化. 结果表明: 不同土地利用类型的土壤粉砂含量差异性显著(P<0.05). 人类活动干扰的时间越长、 强度越大, 粉砂和极细砂含量越高, 而细砂反之. 在人类活动干扰前期(≤5 a), 土壤养分与干扰时间成反比, 而后(>5 a)与时间成正比. 不同土地利用类型的土壤养分分为4个等级: 1级为盐碱地, 为最高等级; 2级为生态防护林地、 荒草地和天然灌木林地; 3级为10 a农田地、 5 a菜园地和3 a农田地; 4级为5 a农田地, 为最低等级. 人类活动使得土壤盐分由原来的(盐碱土)上层高、 下层低转为上层低、 下层高. 而且盐分与干扰时间成反比. 土地利用变化的过程中, 土壤盐分与Cl-、 SO42-、 Ca2+、 Mg2+、 K+和Na+离子均成正比, 而与HCO3-离子成反比. 5 a农田地土壤退化指数(-30.58%)最高, 是其他土地利用类型的1.5~3.9倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号