首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geochemical and isotopic compositions of river water are controlled by different factors. The seasonal and spatial variations in the geochemical composition, δD, δ18O, and δ15N–NO3 of the Kumho River were investigated to reveal the geochemical processes occurring at different seasons. The Kumho River, which runs through different geologic terrains with different land use characteristics, is the largest tributary of the Nakdong River, the longest river in South Korea. The data varied significantly according to the land use and the season. Each monitoring station showed the lowest concentrations of various ions during July, the rainy season, due to the increase of precipitation rate. The ionic concentrations gradually increased downstream by the mineral weathering and anthropogenic activity. At the upper regions of the river, Ca and HCO3, which are closely associated with mineral weathering, were the most dominant cation and anion, respectively. The relatively high Si concentration of the headwater samples, caused by the weathering of volcanic rocks, also showed the importance of weathering in the upper regions mainly composed of volcanic rocks. The downstream regions of the Kumho River are mainly influenced by sedimentary rocks. At the lower reaches of the river, especially near the industrial complexes in Daegu, the third largest city in Korea, Na, Cl, and SO4 became the dominant ions, indicating that the anthropogenic pollution became more important in regulating the chemical composition of the river. The increasing (Ca + Mg + Na + K)/HCO3 ratio downstream also indicates that the anthropogenic effects became more important as the river flows downstream. The isotopic compositions of δD and δ18O indicate that the river waters were significantly affected by evaporation during May and July, but the evaporation effect was relatively low during October. The isotopic composition of δ15N–NO3 increased downstream, also confirming that anthropogenic effects became more significant at the lower reach of the river and near Daegu.  相似文献   

2.
《Applied Geochemistry》2003,18(2):195-220
Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≌0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants.  相似文献   

3.
长江上游是整个长江经济带的重要生态屏障。以长江上游攀西大梁子铅锌矿区水系沉积物为研究对象,查明了重金属元素含量的空间分布特征,分析了重金属来源,探讨了在不同pH条件下重金属的淋滤规律,并进行了生态风险评估。研究结果显示:攀西大桥河流域水系沉积物中重金属的空间分布极不均匀,其含量明显要高于长江水系沉积物中重金属的平均含量;重金属生态风险属于很强风险,Hg和Cd呈高度富集、严重污染;Pb和Zn呈中度富集、中等污染。淋滤实验结果表明Pb、Zn、Cd在酸性和中性条件下淋滤浓度先快速下降,后逐渐趋于平衡,而As在快速下降后又有缓慢升高的趋势。大桥河流域水系沉积物中As、Cd、Pb、Zn主要来源于大梁子铅锌矿的采选活动,Hg为岩石风化和土壤剥蚀来源,而Cu和Cr主要为农业和工业活动来源。综合对比发现,攀西成矿带铅锌矿周边土壤富Cd而贫Cr,此外Cd、Pb、Zn、Hg是主要潜在污染物,且生态风险程度较高。  相似文献   

4.
《Applied Geochemistry》2003,18(2):241-257
In January and March 2000 two tailings dam failures in Maramureş County, northwest Romania, resulted in the release of 200,000 m3 of contaminated water and 40,000 tonnes of tailings into tributaries of the Tisa River, a major tributary of the Danube. The high concentrations of cyanide and contaminant metals released by these dam failures resulted in pollution and fish deaths not only in Romania, but also downstream in the Tisa and Danube rivers within Hungary, Serbia and Bulgaria. Following these accidents, a research programme was initiated in northwest Romania to establish metal levels in rivers affected by the tailings dam failures and to compare these to metal values in river systems contaminated by historic mining and industrial activity. In July 2000, 65 surface water, 65 river sediment and 45 floodplain sediment samples were collected from trunk streams and principal tributaries of the Lapuş/Someş rivers (affected by the January 2000 spill) and the Vişeu/Tisa rivers (affected by the March 2000 Novat spill) down to the Hungarian and Ukrainian borders, respectively. Sample analyses for Pb, Zn Cu and Cd show that metal contamination in surface water and river sediment decreases rapidly downstream away from presently active mines and tailings ponds. Concentrations of heavy metals in water and sediment leaving Romania, and entering Hungary and the Ukraine, generally fall below EC imperative and Dutch intervention values, respectively. However, Zn, Cu and Cd concentrations in river sediments approach or exceed intervention values at the Romanian border. The results of this survey are compared with earlier surveys to ascertain the long-term fate and environmental significance of contaminant metals released by mine tailings dam failures in Maramureş County.  相似文献   

5.
The interaction between heavy metals and river sediment is very important because river sediment is the sink for heavy metals introduced into a river and it can be a potential source of pollutants when environmental conditions change. The Kumho River, the main tributaries of the Nakdong River in Korea, can be one of the interesting research targets in this respect, because it runs through different geologic terrains with different land use characteristics in spite of its short length. Various approaches were used, including mineralogical, geochemical, and statistical analyses to investigate the distribution and behavior of heavy metals in the sediments and their sources. The effect of geological factor on the distribution of these metals was also studied. No noticeable changes in the species or relative amounts of minerals were observed by quantitative X-ray diffraction in the sediments at different stations along the river. Only illite showed a significant correlation with concentrations of heavy metals in the sediments. Based on an average heavy metal concentration (the average concentrations of Cd, Co, Cr, Cu, Ni, Pb, and Zn were 1.67, 20.9, 99.7, 125, 97.6, 149, 298 ppm, respectively), the sediments of the Kumho River were classified as heavily polluted according to EPA guidelines. The concentrations of heavy metals in the sediments were as follows: Zn > Pb > Cu > Ni > Cr > Co > Cd. In contrast, contamination levels based on the average I geo (index of geoaccumulation) values were as follows: Pb > Cd > Zn > Cu > Co = Cr > Ni. The concentrations of heavy metals increased downstream (with the exception of Cd and Pb) and were highest near the industrial area, indicating that industrial activity is the main factor in increasing the concentrations of most heavy metals at downstream stations. Sequential extraction results, which showed increased heavy metal fractions bound to Fe/Mn oxides at the downstream stations, confirmed anthropogenic pollution. The toxicity of heavy metals such as Ni, Cu, and Zn, represented by the exchangeable fraction and the fraction bound to carbonate, also increased at the downstream stations near the industrial complexes. Statistical analysis showed that Pb and Cd, the concentrations of which were relatively high at upstream stations, were not correlated with other heavy metals, indicating other possible sources such as mining activity.  相似文献   

6.
《Applied Geochemistry》2003,18(2):221-239
The Aznalcóllar tailings dam at Boliden Apirsa's Aznalcóllar/Los Frailes Ag–Cu–Pb–Zn mine 45 km west of Seville, Spain, was breached on 25 April 1998, flooding approximately 4600 hectares of land along the Rı́os Agrio and Guadiamar with approximately 5.5 million m3 of acidic water and 1.3×106 m3 of heavy metal-bearing tailings. Most of the deposited tailings and approximately 4.7×106 m3 of contaminated soils were removed to the Aznalcóllar open pit during clean-up work undertaken immediately after the spill until January 1999. Detailed geomorphological and geochemical surveys of the post-clean-up channel, floodplain and valley floor, and sediment and water sampling, were carried out in January and May 1999 at 6 reaches representative of the types of river channel and floodplain environments in the Rı́o Guadiamar catchment affected by the spill. The collected data show that the clean-up operations removed enough spill-deposited sediment to achieve pre-spill metal (Ag, As, Cd, Cu, Pb, Sb, Tl, Zn) concentrations in surface sediment. These concentrations, however, are still elevated above pre-mining concentrations, and emphasise that mining continues to contaminate the Agrio-Guadiamar river system. Dilution by relatively uncontaminated sediment appears to reduce metal concentrations downstream but increases in metal and As concentrations occur downstream, presumably as a result of factors such as sewage and agriculture. River water samples collected in May 1999 have significantly greater dissolved concentrations of metals and As than those from January 1999, probably due to greater sulphide oxidation from residual tailings with concomitant release of metals in the warmer early summer months. These concentrations are reduced downstream, probably by a combination of dilution and removal of metals by mineral precipitation. Single chemical extractions (de-ionised water, CaCl2 0.01 mol l−1, CH3COONH4 1 M, CH3COONa 1 M and ammonium oxalate 0.2 M) on alluvial samples from reaches 1 and 6, the tailings, pre-spill alluvium and marl have shown that the order of sediment-borne contaminant mobility is generally Zn>Cd>Cu>Pb>As. Pb and As are relatively immobile except possibly under reducing conditions. Much of the highly contaminated sediment remaining in the floodplain and channel still contains a large proportion of tailings-related sulphide minerals which are potentially reactive and may continue to release contaminants to the Agrio–Guadiamar river system. Our work emphasises the need for pre-mining geomorphological and geochemical data, and an assessment of potential contributions of contaminants to river systems from other, non-mining sources.  相似文献   

7.
Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.  相似文献   

8.
The San Pedro River (SPR) is located in northern Sonora (Mexico) and southeastern Arizona (USA). SPR is a transboundary river that develops along the Sonora (Mexico) and Arizona (USA) border, and is considered the main source of water for a variety of users (human settlements, agriculture, livestock, and industry). The SPR originates in the historic Cananea mining area, which hosts some of the most important copper mineralizations in Mexico. Acid mine drainage derived from mine tailings is currently reaching a tributary of the SPR near Cananea City, resulting in the contamination of the SPR with heavy metals and sulfates in water and sediments. This study documents the accumulation and distribution of heavy metals in surface water along a segment of the SPR from 1993 to 2005. Total concentrations of Cd, Cu, Fe, Mn, Pb, and Zn in surface waters are above maximum permissible levels in sampling sites near mine tailing deposits. Nevertheless, a significant decrease in the Fe and SO4 2− in surface water (SO4 2−: 7,180–460.39 mg/L; Fe: 1,600–9.51 mg/L) as well as a gradual decrease in the heavy and transition metal content were observed during the period from 1994 to 2005. Approximately 2.3 km downstream of the mine tailings, the heavy metal content of the water drops quickly following an increase in pH values due to the discharging of wastewater into the river. The attenuation of the heavy metal content in surface waters is related to stream sediment precipitation (accompanied by metal coprecipitation and sorption) and water dilution. Determining the heavy metal concentration led to the conclusion that the Cananea mining area and the San Pedro River are ecosystems that are impacted by the mining industry and by untreated wastewater discharges arising from the city of Cananea (Sonora, Mexico).  相似文献   

9.
The River Vişeu catchment in Maramureş County, northwestern Romania, has a long history of base and precious metal mining. Between 1994 and 2003 waste from mining activity at Baia Borşa was stored in the Novaţ-Roşu tailings pond in the upper Vişeu catchment. However, in March 2000, the tailings dam failed releasing approximately 100,000 m3 of contaminated water and 20,000 t of mineral-rich solid waste, which was routed downstream through the Rivers Novaţ, Vaser and Vişeu into the River Tisa. Following the accident metal (Cd, Cu, Pb, Zn) concentrations in river water and river channel sediment were assessed in samples collected annually (July 2000, 2001, 2002 and 2003) from 29 sites in the Vişeu catchment, downstream of the tailings pond. Additionally, the speciation of sediment-associated metals was established using a 4-stage sequential extraction procedure (SEP) and Pb isotope analysis (206/204Pb and 207/204Pb) was carried out to establish the provenance of contaminated sediments. Metal concentrations in river water were found to comply with EU directive ‘target’ values within four months of the failure. However, the impact of the spill upon river channel sediments was found to be much longer-lasting, with evidence of the delayed downstream remobilization of tailings stored within the narrow Novaţ valley following the dam failure, as well as continued inputs of contaminated sediment to the River Vişeu from the River Tisla, another mining-affected tributary. Comparison with data from other recent tailings dam failures, indicates that river system recovery rates depend upon local geomorphological conditions, hydrological regimes, and the nature and scale of post-spill clean-up operations.  相似文献   

10.
Environmental impacts of acid mine drainage (AMD) from Dexing Copper Mine, the largest open pit copper mine in Asia, on Le An River were well documented 10 years ago. However, ore production of the mine has increased fourfold and the contamination situation of the river now is unknown. Our studies indicated that heavy metal concentrations in riverwaters (dissolved), suspended solids (SS) and sediments all showed highly localized distribution patterns closely associated with two AMD-contaminated tributaries (Dawu River and Ji River) and are significantly different from the previous findings. Compared with the previous reports, most of the sampling sites in Le An River displayed lower contents of sediments of 2005 because several historical upstream and downstream heavy metal sources disappeared or became unimportant. The surprised decrease of copper contents in sediments at the mixing location with Dawu River was mainly due to dilution from the sufficient input of poor copper ore (<0.3%).  相似文献   

11.
研究矿业活动重金属的释放、迁移及累积特征对于控制和治理矿区水土环境污染具有重要的意义。本文通过广东大宝山矿区水土污染源调查及横石河流域沿岸水土样品采集,以研究区土壤对照值及国家环境质量为标准,试图探讨了大宝山矿区重金属迁移及累积特征。研究结果表明,横石河沿岸土壤重金属元素主要来自采矿活动的酸性废水的排放,土壤中Cd、Pb、Cu和Zn的含量均超过对照值,呈现出明显的累积特征,且Cd、Cu含量超过了国家土壤环境质量标准;土壤中重金属累积程度及其风险等级呈现出从源头向下游递减的特点,其中凉桥、水楼下地段农田重金属处于高风险区,阳河-莲心村虽有累积,但无风险;上坝村地处土壤重金属累积的中风险区,下坝村处于低风险区。研究结果为矿区重金属污染防治提供了重要依据。  相似文献   

12.
Large numbers of As-enriched geothermal springs are distributed at the southern Tibetan Plateau, and their influence on river water is still not clear. Lhasa River and its tributary, Duilong Qu located at downstream of the largest geothermal spring of the Tibetan Plateau, were selected for sampling during monsoon and non-monsoon seasons. Dissolved trace elements (B, Cr, Ni, Cu, Zn, As, Cs, Ba and U) were measured in river water samples by ICP-MS. The results show that due to contribution of geothermal spring, As levels of Duilong Qu (205.6 μg/L) and Lhasa River (12.7 μg/L) were higher during non-monsoon season than that of WHO guideline for drinking water (10 μg/L). Accordingly, As level of river water was lower during the monsoon season than that of the non-monsoon season due mainly to dilution process. Therefore, although Tibetan rivers are generally considered as free of contamination, geothermal springs cause As contamination of river water at some local regions and may harm the local residents. Further research is needed in other parts of the plateau to determine whether As level of groundwater of the related region is high.  相似文献   

13.
Winter seasonal concentrations of dissolved rare earth elements (REE) of two major river systems (the Wujiang River system and the Yuanjiang River system) in karst-dominated regions in winter were measured by using a method involving solvent extraction and back-extraction and subsequent ICP-MS measurements. The dissolved REE concentrations in the rivers and their tributaries are lower than those in most of the large rivers in the world. High pH and high cation (i.e., Na+ + Ca2+) concentrations of the rivers are the most important factors controlling the concentrations of dissolved REE in the river water. The dissolved load (<0.22 μm) REE distribution patterns of high-pH river waters are very different from those of low-pH river waters. The shale (PAAS)-normalized REE patterns for the dissolved loads are characterized by light REE-enrichment and heavy REE-enrichment. Water in the upper reaches of the Wujiang River generally shows light REE-enriched patterns, while that in the middle and lower reaches generally shows heavy REE-enriched patterns. The Yuanjiang River is heavy REE enriched with respect to the light REE in the same samples. Water of the Wuyanghe River draining dolomite-dominated terrains has the highest heavy REE-enrichment. Most river water samples show the shale-normalized REE patterns with negative Ce and Eu anomalies, especially water from Wuyanghe River. Y/Ho ratios show that the water/particle interaction might have played an important role in fractionation between HREE and LREE.  相似文献   

14.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

15.
Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment.  相似文献   

16.
Arsenic mobility in fluvial environment of the Ganga Plain,northern India   总被引:1,自引:1,他引:0  
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   

17.
Rivers and their floodplains are dynamic systems, sediments are continually added to floodplain surfaces, while erosion and scour may remove sediments to be added to floodplains further downstream. When mining sediments were introduced into some catchments in Britain as ore deposits were exploited, river channels and floodplains were grossly polluted with metals. The legacy of this uncontrolled release of contaminants is apparent still, and contemporary channel deposits are enriched in metals. While the floodplains acted as a buffer to the dispersal of metals straight through the catchment, metals are still being released hundreds of years later as the floodplains are eroded and this secondary pollution of the river is a long-term problem.By studying a range of mining catchments, the effects of key variables on heavy metal dispersal in the fluvial environment can be assessed. As no single catchment displays the whole array of possible situations, a mosaic of case studies from several areas provides a good representation of potential conditions.  相似文献   

18.
The 150-year historical changes in concentrations of pollution elements (Pb, Cu and Zn) in sediment profiles from two riparian freshwater wetlands along the Wusuli River (boundary river between China and Russia) were studied, and the ecological risk of heavy metals and their effects on four riparian wetlands during the urban development from Khanka Lake to Black Bear Island along the Wusuli River were assessed. Results showed that there are sharp increases of the enrichment factor and the ratio of anthropogenic/total of heavy metals in the sediment profiles during the 2000s, which showed that intensive human activities during city development had greatly affected heavy metals distribution since the 1960s. According to the principal component analysis, sediment textures, redox regimes, and organic matter contents accounted for 45.7, 23.6 and 16.5 % of the total variance of element concentrations, respectively. This study also showed that ecological risk of heavy metals was increased along the Wusuli River and closely related to the water quality of the rivers as their hydrological regimes likely affect wetlands.  相似文献   

19.
Soluble reactive phosphorus (SRP) has recently been shown to be one of the limiting nutrients for the growth of phytoplankton in the northern Gulf of Mexico. We show here that during the past decade, SRP concentrations in the lower reaches of North America's largest river, the Mississippi River, were highest in summer and lowest in winter and positively correlated with water temperature. Upstream data showed this coupling to increase in a downstream trend in the Mississippi main stem. Water quality data analysis and phosphorus mass balances were conducted to examine the controls of this relationship. The results showed that the positive SRP–temperature correlation in the Mississippi River system was largely a result of gradual dilution of SRP-enriched upper Mississippi River waters, which contributed most to the Mississippi River during summer, by SRP-depleted waters from the Ohio and other tributaries. Particle buffering and organic matter mineralization might play a role in the observed SRP–temperature relationship, but their importance relative to tributary effects is not quantified. Future work on the seasonal dynamics of SRP in large river systems needs to consider the effects of both tributary dilution and in situ processes.  相似文献   

20.
永定河沉积特征研究   总被引:1,自引:0,他引:1  
永定河是华北海河水系的最大支流,在其上、下游的2个河段具有明显的沉积差异.通过对永定河上、下游河段的沉积物岩样的分析,探讨了不同河段的沉积构造类型,从粒度、层理和垂向层序方面,分析了上游至下游沉积特征存在的差异,并结合永定河同一历史时期的河道展布形态,根据辫状河的形成机理,分析了不同河道段的形成原因和演化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号