共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alexander Hobbs Sergei Nayakshin 《Monthly notices of the Royal Astronomical Society》2009,394(1):191-206
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at R ≃ 1 pc from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep, Σ* ∝ R −2 , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations. 相似文献
3.
4.
Jorge Cuadra Sergei Nayakshin Fabrice Martins 《Monthly notices of the Royal Astronomical Society》2008,383(2):458-466
We present numerical simulations of stellar wind dynamics in the central parsec of the Galactic Centre, studying in particular the accretion of gas on to Sgr A*, the supermassive black hole. Unlike our previous work, here we use state-of-the-art observational data on orbits and wind properties of individual wind-producing stars. Since wind velocities were revised upwards and non-zero eccentricities were considered, our new simulations show fewer clumps of cold gas and no conspicuous disc-like structure. The accretion rate is dominated by a few close 'slow-wind stars' ( v w ≤ 750 km s−1 ), and is consistent with the Bondi estimate, but variable on time-scales of tens to hundreds of years. This variability is due to the stochastic infall of cold clumps of gas, as in earlier simulations, and to the eccentric orbits of stars. The present models fail to explain the high luminosity of Sgr A* a few hundred years ago implied by Integral observations, but we argue that the accretion of a cold clump with a small impact parameter could have caused it. Finally, we show the possibility of constraining the total mass-loss rate of the 'slow-wind stars' using near infrared observations of gas in the central few arcseconds. 相似文献
5.
6.
7.
Recent surveys have identified seven hypervelocity stars (HVSs) in the halo of the Milky Way. Most of these stars may have originated from the breakup of binary star systems by the nuclear black hole SgrA*. In some instances, the breakup of the binary may lead to a collision between its member stars. We examine the dynamical properties of these collisions by simulating thousands of different binary orbits around SgrA* with a direct N -body integration code. For some orbital parameters, the two stars collide with an impact velocity lower than their escape velocity and may therefore coalesce. It is possible for a coalescing binary to have sufficient velocity to escape the galaxy. Furthermore, some of the massive S-stars near Sgr A* might be the merger remnants of binary systems, however this production method can not account for most of the S-stars. 相似文献
8.
I. S. Glass S. Matsumoto B. S. Carter K. Sekiguchi 《Monthly notices of the Royal Astronomical Society》2001,321(1):77-95
We report here the results of a 4-yr K -band (2.2 μm) survey for large-amplitude variable stars in a area centred on the Galactic Centre. A total of 409 likely long-period variables (LPVs) were detected, for which positions, amplitudes, average magnitudes and periods were obtained whenever possible. The surface density of LPVs is more than ten times greater than in the Sgr I Baade window at
The limits of completeness arising from interstellar and circumstellar absorption are discussed. Most of the area suffers interstellar extinction of The shorter-period LPVs are less luminous than the longer-period ones and may be slightly under-represented in the data. Extremely heavy extinction which affects the probability of detecting variables, occurs in less than 25 per cent of the area.
Almost all of the LPVs are Miras or OH/IR stars, with periods ranging from 150 d to about 800 d. K -band counterparts have been found for 59 per cent of the 109 known OH sources in the field. The average period of the variables found is 427 d, while that of the OH/IR stars is 524 d. For comparison, the average period in the Sgr I window, which contains no known OH/IR stars, is 333 d and only two stars are detected with The survey field also contains a number of long-period, large-amplitude variables that are not OH emitters. 相似文献
The limits of completeness arising from interstellar and circumstellar absorption are discussed. Most of the area suffers interstellar extinction of The shorter-period LPVs are less luminous than the longer-period ones and may be slightly under-represented in the data. Extremely heavy extinction which affects the probability of detecting variables, occurs in less than 25 per cent of the area.
Almost all of the LPVs are Miras or OH/IR stars, with periods ranging from 150 d to about 800 d. K -band counterparts have been found for 59 per cent of the 109 known OH sources in the field. The average period of the variables found is 427 d, while that of the OH/IR stars is 524 d. For comparison, the average period in the Sgr I window, which contains no known OH/IR stars, is 333 d and only two stars are detected with The survey field also contains a number of long-period, large-amplitude variables that are not OH emitters. 相似文献
9.
Observations of the Galactic Centre show evidence of disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. While it is widely accepted that about half of the stars form a relatively flat disc rotating clockwise on the sky, there is a substantial ongoing debate on whether there is a second, counter-clockwise disc of stars.
By means of N -body simulations using our bhint code, we show that two highly inclined stellar discs with the observed properties cannot be recognized as two flat circular discs after 5 Myr of mutual interaction. Instead, our calculations predict a significant warping of the two discs, which we show to be apparent among the structures observed in the Galactic Centre. While the high eccentricities of the observed counter-clockwise orbits suggest an eccentric origin of this system, we show the eccentricity distribution in the inner part of the more massive clockwise disc to be perfectly consistent with an initially circular disc in which stellar eccentricities increase due to both non-resonant and resonant relaxation.
We conclude that the relevant question to ask is therefore not whether there are two discs of young stars, but whether there were two such discs to begin with. 相似文献
By means of N -body simulations using our bhint code, we show that two highly inclined stellar discs with the observed properties cannot be recognized as two flat circular discs after 5 Myr of mutual interaction. Instead, our calculations predict a significant warping of the two discs, which we show to be apparent among the structures observed in the Galactic Centre. While the high eccentricities of the observed counter-clockwise orbits suggest an eccentric origin of this system, we show the eccentricity distribution in the inner part of the more massive clockwise disc to be perfectly consistent with an initially circular disc in which stellar eccentricities increase due to both non-resonant and resonant relaxation.
We conclude that the relevant question to ask is therefore not whether there are two discs of young stars, but whether there were two such discs to begin with. 相似文献
10.
Noriyuki Matsunaga † Takahiro Kawadu Shogo Nishiyama † Takahiro Nagayama Hirofumi Hatano † Motohide Tamura Ian S. Glass Tetsuya Nagata 《Monthly notices of the Royal Astronomical Society》2009,399(4):1709-1729
We report the results of a near-infrared survey for long-period variables in a field of view of 20× 30 arcmin2 towards the Galactic Centre (GC). We have detected 1364 variables, of which 348 are identified with those reported in Glass et al. We present a catalogue and photometric measurements for the detected variables and discuss their nature. We also establish a method for the simultaneous estimation of distances and extinctions using the period–luminosity relations for the JHK s bands. Our method is applicable to Miras with periods in the range 100–350 d and mean magnitudes available in two or more filter bands. While J band means are often unavailable for our objects because of the large extinction, we estimated distances and extinctions for 143 Miras whose H - and K s -band mean magnitudes are obtained. We find that most are located at the same distance to within our accuracy. Assuming that the barycentre of these Miras corresponds to the GC, we estimate its distance modulus to be 14.58 ± 0.02 (stat.) ± 0.11 (syst.) mag , corresponding to 8.24 ± 0.08 (stat.) ± 0.42 (syst.) kpc . We have assumed the distance modulus to the Large Magellanic Cloud to be 18.45 mag, and the uncertainty in this quantity is included in the above systematic error. We also discuss the large and highly variable extinction. Its value ranges from 1.5 mag to larger than 4 mag in except towards the thicker dark nebulae and it varies in a complicated way with the line of sight. We have identified mid-infrared counterparts in the Spitzer /IRAC catalogue of Ramírez et al. for most of our variables and find that they follow rather narrow period–luminosity relations in the 3.6–8.0 μm wavelength range. 相似文献
11.
12.
13.
M. López-Corredoira P. L. Hammersley F. Garzón E. Simonneau T. J. Mahoney 《Monthly notices of the Royal Astronomical Society》2000,313(2):392-410
A method based on Lucy's iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K -band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10°>| b |>2°, | l |<15°). The top end of the K -band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by López-Corredoira et al., are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M K =−8.0 mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12° in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major–minor axial ratio of the ellipsoids is found not to be constant, the best fit to the gradient being K z =(8.4±1.7)×exp(− t /(2000±920) pc), where t is the distance along the major axis of the ellipsoid in parsecs. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc< t <3000 pc, is calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K z is allowed to vary. From these, the total number of bulge stars is ∼3×1010 or ∼4×1010 , respectively. 相似文献
14.
Pat Scott Malcolm Fairbairn Joakim Edsjö 《Monthly notices of the Royal Astronomical Society》2009,394(1):82-104
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of 0.3–2.0 M⊙ and metallicities Z = 0.0003–0.02 . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments. 相似文献
15.
Raul Jimenez Chris Flynn & Eira Kotoneva 《Monthly notices of the Royal Astronomical Society》1998,299(2):515-519
We use the Hipparcos colour–magnitude diagram of field stars with Tycho colours to make a new minimum age estimate for the Galactic disc. The method is based on fits to the red envelope of subgiants in the Hipparcos colour–magnitude diagram with synthetic isochrones covering the range of disc metal abundance. The colours and luminosities of the isochrones as a function of abundance are checked using new techniques involving 'red-clump' stars in the giant branch region and on the main sequence using G and K dwarfs. We derive a minimum disc age of 8 Gyr, in good agreement with other methods. 相似文献
16.
N. Mouawad A. Eckart S. Pfalzner R. Schdel J. Moultaka R. Spurzem 《Astronomische Nachrichten》2005,326(2):83-95
As stars close to the galactic centre have short orbital periods it has been possible to trace large fractions of their orbits in the recent years. Previously the data of the orbit of the star S2 have been fitted with Keplerian orbits corresponding to a massive black hole (MBH) with a mass of MBH = 3–4 × 106M⊙ implying an insignificant cusp mass. However, it has also been shown that the central black hole resides in a ∼1″ diameter stellar cluster of a priori unknown mass. In a spherical potential which is neither Keplerian nor harmonic, orbits will precess resulting in inclined rosetta shaped trajectories on the sky. In this case, the assumption of non‐Keplerian orbits is a more physical approach. It is also the only approach through which cusp mass information can be obtained via stellar dynamics of the cusp members. This paper presents the first exemplary modelling efforts in this direction. Using positional and radial data of star S2, we find that there could exist an unobserved extended mass component of several 105M⊙ forming a so‐called ‘cusp’ centered on the black hole position. Considering only the fraction of the cusp mass Mequation/tex2gif-inf-4.gif within the apo‐center of the S2 orbit we find as an upper limit that Mequation/tex2gif-inf-6.gif/(MBH + Mequation/tex2gif-inf-9.gif) ≤ 0.05. A large extended cusp mass, if present, is unlikely to be composed of sub‐solar mass constituents, but could be explained rather well by a cluster of high M/L stellar remnants, which we find to form a stable configuration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
Philip Chang 《Monthly notices of the Royal Astronomical Society》2009,393(1):224-228
I examine the effectiveness of Kozai oscillations in the centres of galaxies and in particular the Galactic Centre (GC) using standard techniques from celestial mechanics. In particular, I study the effects of a stellar bulge potential and general relativity on Kozai oscillations, which are induced by stellar discs. Löckmann et al. recently suggested that Kozai oscillations induced by the two young massive stellar discs in the GC drive the orbits of the young stars to large eccentricity ( e ≈ 1) . If some of these young eccentric stars are in binaries, they would be disrupted near pericentre, leaving one star in a tight orbit around the central supermassive black hole and producing the S-star population. I find that the spherical stellar bulge suppresses Kozai oscillations, when its enclosed mass inside a test body is of the order of the mass in the stellar disc(s). Since the stellar bulge in the GC is much larger than the stellar discs, Kozai oscillations due to the stellar discs are likely suppressed. Whether Kozai oscillations are induced from other non-spherical components to the potential (e.g. a flattened stellar bulge) is yet to be determined. 相似文献
18.
P. L. Hammersley F. Garzón T. J. Mahoney M. López-Corredoira M. A. P. Torres 《Monthly notices of the Royal Astronomical Society》2000,317(3):L45-L49
We present near-infrared colour–magnitude diagrams and star counts for a number of regions along the Galactic plane. It is shown that along the l =27°, b =0° line of sight there is a feature at 5.7±0.7 kpc with a density of stars at least a factor of 2 and probably more than a factor of 5 times that of the disc at the same position. This feature forms a distinct clump on an H versus J − H diagram and is seen at all longitudes from the bulge to about l =28°, but at no longitude greater than this. The distance to the feature at l =20° is about 0.5 kpc further than at l =27°, and by l =10° it has merged with, or has become, the bulge. Given that at l =27° and l =21° there is also a clustering of very young stars, the only component that can reasonably explain what is seen is a bar with half-length of around 4 kpc and a position angle of about 43°±7°. 相似文献
19.
20.
U. Löckmann H. Baumgardt P. Kroupa 《Monthly notices of the Royal Astronomical Society》2009,398(1):429-437
Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be one to two orders of magnitude more massive than the disc(s).
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF. 相似文献
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF. 相似文献