首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Proportions of the overland, delayed, and groundwater runoff are given for different phases of the hydrological regimes of rivers under different landscape–climate conditions in Russia. The concept of runoff hydrological regime is in agreement with the formation features of the annual and seasonal runoff on small watersheds under current climate conditions. The increase in winter runoff is due to the impulse discharge regime of soil water and groundwater, which receive additional recharge during frequent thaws and at weak freezing of the aeration zone. Variations in the values of runoff, total precipitation, and mean temperature were shown to be both synchronous and periodic.  相似文献   

2.
通过对同一台站人工观测的地磁场总强度F与连续记录F,及两套连续记录仪记录的地磁场总强度F夜均值的差值分析,发现同一台站两种差值均存在显著的年变化特征。对其他台站同样可以看到类似变化。而各时段的时均值差值也表现出相似的变化特征。由此说明,同一台站地磁观测区的不同点位,地磁场差异在长时间内不断发生变化,在进行绝对观测时,无法通过选择绝对观测时间消除该差值变化。  相似文献   

3.
The possibility of applying unilaterally truncated probability distributions of minimal water flow is considered. Relationships between moment estimates of truncated and full distributions are considered for the case of normal and gamma distributions.  相似文献   

4.
Many-year variations of river runoff in the Selenga basin are analyzed along with precipitation, potential evapotranspiration, and basin water storages. Data of ground-based (1932–2015) and satellite observations, as well as the analysis of literature data suggest the presence of within-century cycles in the series of annual and minimum runoff. Compared with 1934–1975, the Selenga Basin shows a general tendency toward a decrease in the maximum (by 5–35%) and mean annual (up to 15%) runoff at an increase in the minimum runoff (by 30%), a decrease in the mean annual precipitation (by 12%), and an increase in potential evapotranspiration by 4% against the background of a decrease in evaporation because of lesser soil moisture content and an increase in moisture losses for infiltration because of permafrost degradation. The observed changes in water balance may have unfavorable environmental effects.  相似文献   

5.
Estimating the probability of river channel adjustment   总被引:1,自引:0,他引:1  
River channels respond not only to natural external controls, and natural controls internal to individual drainage basins, but also to the influence of human activity. Although many site-specific instances of change have been documented, the complexity of the process interactions means that very little is known about the general nature of different styles of adjustment, or their relative sensitivity to drainage basin controls. Data obtained from the Thames Basin, southeast England, are used in a probabilistic approach to differentiate between four styles of river channel adjustment and a variety of drainage basin characteristics. Adopting a probabilistic approach quantifies the degree of confidence attributable to any prediction of river channel adjustment while acknowledging that certainties are difficult to obtain in studies of the natural environment. This approach could thus allow environmental planning decisions to be made with a quantified degree of uncertainty. Four multivariate logistic regression models are described which use a combination of continuous and categorical variables to associate drainage basin characteristics with four styles of river channel adjustment derived from a reconnaissance evaluation survey. In comparison, it is shown that laterally migrating river channels are the most common ‘natural’ channel type in the Thames Basin, and their probability of occurrence rises to 71 per cent in sand/gravel environments. In channels regulated by low weirs, deposition is the most likely channel activity where gradients are lower than 0·0040, whilst above this threshold the majority of channels are morphologically inactive. In urban channels, many of which are also lined by concrete, the likelihood of obtaining a stable channel is mostly in excess of 80 per cent. In channels straightened during this century, deposition is most likely in gradients below 0·0050, whereas erosional enlargement is most probable above this value. In channels which were initially channelized prior to this century, deposition gives way to stability at a threshold gradient of 0·0080.  相似文献   

6.
7.
Field data are used to assess the autocorrelation coefficient between successive terms in the series of minimal 30-day sums of river runoff in the winter and summer-autumn low-flow periods in the Russian territory. Zoning of the autocorrelation coefficient of winter and summer-autumn runoff is carried out within this territory, and the character of its dependence on the module and coefficient of variation of minimal runoff is studied.  相似文献   

8.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

9.
The general picture of wetting the East European Plain in 1966–1985 is established by studying the trajectories of more than 5000 cyclones in the Northern Hemisphere. The role of the Arctic High as a regulator of the paths of the Atlantic cyclones is established. It is shown that the majority of rivers of the East European Plain feature higher rate of streamflow in the years with the El Nino effect.Translated from Vodnye Resursy, Vol. 32, No. 1, 2005, pp. 108–114.Original Russian Text Copyright © 2005 by Babkin, Klige.  相似文献   

10.
A model of long-term river runoff variations is proposed. The model is based on a difference stochastic equation of water balance on a watershed. Precipitation and evaporation on the watershed are simulated by stochastic, dependent, non-Gaussian Markov processes. Long-term river runoff variations are described by a component of three-dimensional non-Gaussian Markov process. It is shown that the autocorrelation and skewness coefficients for river runoff can be negative. The proposed model can be used to assess the effect of climate-induced variations in precipitation and evaporation regimes in a watershed on long-term river runoff variations.  相似文献   

11.
The depth of soil freezing in river watersheds is a factor governing winter runoff formation. The freezing depth regulates the redistribution of stored soil moisture between thawed and frozen soil layers. The moisture stored in the thawed soil layer is spent for winter runoff, while that in the frozen zone forms snowmelt runoff. The depth of soil freezing has considerably decreased over the period of climate changes, resulting in an increase in winter runoff and greater losses of snowmelt runoff.  相似文献   

12.
Averaged many-year measurement data on the concentrations of mineral forms of biogenic elements are analyzed, and their total concentrations in the rivers of Selenga, Chikoi, Khilok, Uda, Dzhida, and Temnik are evaluated. The monthly variations of the concentrations of major biogenic substances are characterized, and their ratios within a year are determined. Characteristics of river water runoff and biogenic substance concentrations are used to evaluate their within-year discharge by rivers. Characteristic variations in the ratios between the total and mineral forms of biogenic elements discharged by rivers have been revealed. It is established that the share of mineral components in the total input into the Selenga delta Ntot and Ptot are 82 and 22%, respectively.  相似文献   

13.
New approaches, methods, and formulas, proposed by the author, are used to study many-year and year-to-year variations of the annual, maximal, and minimal runoff of rivers in Baikal Lake drainage basin. The stationary character of most changes in the annual and maximal runoff (including major Baikal tributaries at the gages nearest to the lake) is demonstrated and the percentage of transient changes in the minimal runoff is shown to be close to the mean world characteristics. Some effects found in Baikal Basin have been generally recorded only in the data of runoff observations in much larger basins or globally: “the law of the power of minus 0.5” for the dependence of the coefficient of variation and the correlation between neighboring years on the mean runoff depth, a fixed structure of the orders of stochastic (autoregression models), the effect of bifurcation of the models of maximal and minimal runoff at the passage from drier to wetter watersheds.  相似文献   

14.
Siberian rivers are of global importance as they impact on the freshwater budget of the Arctic Ocean, which affects the Thermo-Haline circulation in the North Atlantic Ocean. Siberian rivers, in particular the tributaries to the larger rivers, are under-represented in the international river-regime databases. The runoff of three Russian rivers in the Central Siberian taiga (Kureyka, Karabula and Erba) is modelled to analyse the relative influence of climate. In addition three rivers (Rhine, Maas and Odra) in Western Europe are similarly assessed as a control. The results show that the role of precipitation and autocorrelation as factors in the formation of river runoff is stronger under oceanic climate conditions, increasing from the central regions of Northern Eurasia towards the Arctic Ocean in the North and the Atlantic in the West. At the same time the influence of summer temperatures is weakened. The formation of Northern Eurasian river runoff appears to be influenced by periodically thawing top horizons of permafrost soil. Time served as an indicator for land use change after inclusion of meteorological data in the models. Maas and Erba showed a significant influence of the time factor. For the Erba the onset of agricultural land use in the catchment coincides with a drop in runoff. A similar causal relationship is suggested for the Maas. Land use can change the formation of runoff, which in turn can be used as an environmental indicator for sustainable land use.  相似文献   

15.
Based on the methods of O.I. Krestovskii and recent information on the forestry of European Russia, the article offers the assessment of the impact of transformations in the structure of forests in the recent decades on the river runoff and evaporation. The accompanying changes in the runoff are shown to be relatively insignificant; however, in the XXI century they may become more significant and manifest themselves not only at the local but also at the regional level.  相似文献   

16.
Flow duration curve provides an important synthesis of the relevant hydrological processes occurring at the basin scale, and, although it is typically obtained from field observations, different theoretical approaches finalized to its indirect reconstruction have been developed in recent years. In this study a recent ecohydrological model for the probabilistic characterization of base flows is tested through its application to a study catchment located in southern Italy, where long historical series of daily streamflow are available. The model, coupling soil moisture balance with a simplified scheme of the hydrological response of the basin, provides the daily flow duration curve. The original model is here modified in order to account for rainfall reduction due to canopy interception and stress its potential applicability to most of the ephemeral Mediterranean basins, where measurements of air temperature and rainfall often represent the only meteorological data available. The model shows a high sensitivity to two parameters related to the transport and evapotranspiration processes. Two different operational approaches for the identification of such parameters are explored and compared: by the first approach, these parameters are considered as time invariant quantities, while, in the second approach, empirical relationships between such parameters and the underlying climatic forcings are first derived and then adopted in the parameters calibration procedure. The model ability in reproducing the empirical flow duration curves and the model sensitivity to climate forcings, here referred as elasticity of the model, are investigated and it is shown how the adoption of the second approach leads to a general improvement of the model elasticity.  相似文献   

17.
The potentialities of the land surface model as applied to the calculation of river runoff in high latitudes were examined. Three approaches were used to specify input data based on meteorological data and land surface parameters. A method was developed for automated optimization of some model parameters by using direct search of minimum of root-mean-square deviation between the calculated and measured streamflow values. The global data sets are shown to be applicable in principle for hydrological calculations.  相似文献   

18.
It is proposed to assess the admissible runoff withdrawals in small river basins by a complex of calculations involving hydrological analysis, the estimation of conditions required for the sustainable functioning of aquatic and terrestrial ecosystems, and, finally, the evaluation of the admissible withdrawals based on the functioning conditions of an existing or anticipated water management system.  相似文献   

19.
20.
A procedure for evaluating hydrological characteristics with the use of individual information and regional relationships is considered. Considerable attention is paid to estimating random and systematic errors. Examples are given to demonstrate calculating the maximum runoff of spring flood with the use of individual observational data series with different lengths and regional relationships, as well as evaluating maximum rainfall runoff with the use of only regional relationships.Translated from Vodnye Resursy, Vol. 32, No. 1, 2005, pp. 5–12.Original Russian Text Copyright © 2005 by Rozhdestvenskii, Lobanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号