首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

2.
In this paper we present new data on the spatial variability of peridotite composition across a kilometer-scale mantle shear zone within the Lanzo massif (Western Alps, Italy). The shear zone separates the central from the northern part of the massif. Plagioclase peridotite shows gradually increasing deformation towards the shear zone, from porphyroclastic to mylonitic textures in the central body, while the northern body is composed of porphyroclastic rocks. The peridotite displays a large range of compositions, from fertile peridotite to refractory harzburgite and dunite. Deformed peridotites (proto-mylonite and mylonites) tend to be compositionally more homogeneous and fertile than weakly deformed peridotites. The composition of most plagioclase peridotites show rather high and constant (Ce/Yb) N ratios, and Yb N that cannot be explained by any simple melting model. Instead, refertilization modeling, consisting of melt increments from spinel peridotite sources, particularly with E-MORB melt, reasonably reproduces the plagioclase peridotite whole rock composition. Combined with constraints from Ce–Nb and Ce–Th systematics, we speculate that peridotites such as those from Lanzo record pervasive refertilization processes in the thermal boundary layer. In this scenario, mantle shear zones might act as important areas of melt focusing in the upper mantle that separates the thermal boundary layer from the conductively cooled mantle.  相似文献   

3.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

4.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

5.
北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系   总被引:1,自引:1,他引:1  
李犇  朱赖民  弓虎军  郭波  杨涛  王飞  王伟  徐奥 《岩石学报》2010,26(5):1487-1502
松树沟橄榄岩体是秦岭造山带中规模最大的赋存铬铁矿床的超基性岩体。松树沟橄榄岩主要由细粒橄榄岩质糜棱岩和中粗粒橄榄岩组成。本文通过对松树沟橄榄岩的岩相学、主微量、稀土元素地球化学的系统研究,认为松树沟细粒方辉橄榄岩为洋脊扩张过程中地幔岩减压-近分离熔融产生的残留体,细粒纯橄岩主要由地幔橄榄岩熔融残留橄榄石、消耗辉石的减压熔融反应:aCpx+bOpx+cSpl=dOl+1Melt生成的橄榄石和少量的地幔方辉橄榄岩残留体组成,但均受到了后期渗滤熔体的再富集作用;中粗粒纯橄岩和方辉橄榄岩主要为上述反应产生的渗滤熔体被圈闭在迁移通道或减压扩容带内在热边界层(TBL)通过反应:MeltA=Ol+MeltB冷凝结晶而成,属堆晶橄榄岩。Pb-Sr-Nd同位素地球化学的证据显示,松树沟橄榄岩与基性岩具有共同的地幔源区,二者同为松树沟蛇绿岩的重要组成部分。通过矿床地质特征及铬铁矿电子探针测试研究,认为松树沟铬铁矿床是产于中粗粒堆晶纯橄岩中的层状铬铁矿床,形成于格林威尔期松树沟洋盆的扩张过程中,是中粗粒纯橄岩在热边界层(TBL)的冷凝结晶过程中岩浆分异作用的产物。  相似文献   

6.
论述了大陆俯冲碰撞带中地幔橄榄岩的基本特征和成岩类型,并重点讨论柴北缘超高压变质带中不同性质的橄榄岩及其成因。根据岩石学特征,我们确定柴北缘超高压带中发育有两种类型的橄榄岩:(1)石榴橄榄岩,岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄岩和石榴辉石岩,是大陆型俯冲带的标志性岩石。金刚石包裹体、石榴石和橄榄石的出溶结构、温压计算等均反映其来源深度大于200km。地球化学特征表明该橄榄岩的原岩是岛弧环境下高镁岩浆在地幔环境下堆晶的产物。(2)大洋蛇绿岩型地幔橄榄岩,与变质的堆晶杂岩(包括石榴辉石岩、蓝晶石榴辉岩)和具有大洋玄武岩特征的榴辉岩构成典型的蛇绿岩剖面,代表大洋岩石圈残片。这两类橄榄岩的确定对了解柴北缘超高压变质带的性质和构造演化过程有重要意义。  相似文献   

7.
KUBO  K. 《Journal of Petrology》2002,43(3):423-448
Dunite formation processes in highly depleted peridotites arediscussed based upon a detailed study of the Iwanaidake peridotite,Hokkaido, Japan, which consists mainly of harzburgite with asmall amount of dunite. In the harzburgites, the Mg# [= 100x Mg/(Mg + Fe2+)] of olivine ranges from 91·5 to 92·5,and the Cr# [= 100 x Cr/(Cr + Al)] of spinel from 30 to 70;in the dunites, the Mg# of olivine ranges from 92·5 to94 and the Cr# of spinel from 60 to 85, respectively. The NiOwt % of olivine in harzburgites ranges from 0·38 to 0·44,and in dunites from 0·35 to 0·37. The Mg# andCr# are higher and NiO wt % is lower in the dunites than inthe harzburgites surrounding the dunites. The Mg# and Cr# exhibitnormal depletion trends expected from simple partial melting,whereas the NiO wt % shows an abnormal trend. On the basis ofmass balance calculations, dunites are considered to be derivedfrom the harzburgites by a process involving incongruent meltingof orthopyroxene (orthopyroxene olivine + Si-rich melt). Hydrousconditions were necessary to lower the solidus, and thus meltingof harzburgite was probably triggered by the introduction ofhydrous silicate melt. The dunite in this massif may have formedin the mantle wedge above a subduction zone. KEY WORDS: depleted peridotite; hydrous melt; incongruent melting; residual dunite; Iwanaidake peridotite  相似文献   

8.
丁青蛇绿岩位于班公湖-怒江缝合带东段,是该缝合带出露面积最大的蛇绿岩。为查明岩体成因,在丁青东岩体中实施了一口165.19m的钻孔。除最顶部有约0.5m厚的第四系残坡积物外,其余均为地幔橄榄岩。结合显微镜鉴定将岩心划分出17个岩性单元层,岩性主要以方辉橄榄岩为主,夹少量纯橄岩和含铬铁矿纯橄岩。地幔橄榄岩中橄榄石的Fo变化于88.79~93.73,铬尖晶石的Cr#变化于44.33~81.66,揭示丁青地幔橄榄岩可能经历过约20%~40%的中高度部分熔融作用;全岩地球化学分析表明其具有富镁(MgO=45.98%~49.45%)、贫铝(Al2O3=0.19%~1.37%)和贫钙(CaO=0.28%~0.70%)的特点,属于熔融程度较高的地幔残余物质。岩石具有明显不同于阿尔卑斯蛇绿岩的轻稀土元素富集特征,指示区内地幔橄榄岩先经历了较强程度的部分熔融,后经历了俯冲消减过程中的流体交代。利用地幔橄榄岩中的铬尖晶石成分计算母熔体Al2O3含量对应的FeO/MgO值,与不同构造环境原始岩浆成分相比较,发现丁青地幔橄榄岩母熔体大多处于玻安岩中。纯橄岩氧逸度估算FMQ=-3.05~-0.71,方辉橄榄岩氧逸度FMQ=-3.89~+1.47,显示丁青地幔橄榄岩有俯冲作用的参与。通过丁青钻孔岩心的研究,提出丁青东岩体可能形成于俯冲带之上的弧前环境这一观点。  相似文献   

9.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

11.
The Erro-Tobbio peridotites (Voltri Massif, Ligurian Alps) represent subcontinental lithospheric mantle tectonically exhumed during Permo–Mesozoic extension of the Europe–Adria lithosphere. Previous studies have shown that exhumation started during Permian times, and occurred along kilometer-scale lithospheric shear zones which enhanced progressive deformation and recrystallization from spinel- to plagioclase-facies conditions. Ongoing field and petrologic investigations have revealed that the peridotites experienced, during uplift, a composite history of diffuse melt migration and multiple episodes of ultramafic–mafic intrusions. In this paper we present the results of field, structural and petrologic–geochemical investigations into a sector of the Erro-Tobbio peridotite unit that preserves well this multiple intrusion history. Melt impregnation in the peridotites is evidenced by significant plagioclase enrichment and crystallization of unstrained orthopyroxene replacing kinked mantle olivine and clinopyroxene; impregnating melts were thus opx-saturated. Melt–rock interaction caused chemical changes in mantle minerals (e.g. Al decrease and REE increase in cpx; Ti and Cr# enrichment in spinel). Nevertheless, clinopyroxenes still exhibit LREE depletion (CeN/SmN = 0.006–0.011), indicating a depleted signature for the percolating melts. Melt impregnation was thus related to diffuse porous flow migration of depleted MORB-type melt fractions that modified their compositions towards opx saturation by mantle–melt interaction during ascent. The impregnated peridotites are intruded by a hectometer-scale stratified cumulate body, mostly consisting of troctolites and plagioclase wehrlites, showing gradational, interfingered contacts with the host mantle rocks. Subsequent intrusion events are revealed by the occurrence of olivine gabbros as decameter-wide lenses, variably thick (centimeter- to meter-scale) dykes and thin dykelets, which crosscut both the peridotite foliation and the magmatic layering in the cumulates. Overall, major and trace element compositions of minerals in the intrusives indicate that they represent variably differentiated cumulus products crystallized from rather primitive N-MORB-type aggregated melts. Slightly more evolved compositions are shown by olivine gabbros, relative to the troctolites and plagioclase wehrlites of the cumulate body. Mineral chemistry features (e.g. the Fo–An correlation and high Na, Ti, Mg# in cpx) indicate that the studied intrusive rocks crystallized at moderate pressure conditions (3–5 kbar, i.e. 9–15 km depth). Our study thus points to a progressive transition from porous flow melt migration to emplacement of magmas in fractures, presumably related to progressive change of lithospheric mantle rheology during extension-related uplift and cooling.  相似文献   

12.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

13.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

14.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

15.
内蒙古阿巴嘎地幔岩捕掳体与岩石圈地幔性质探讨   总被引:1,自引:2,他引:1  
阿巴嘎地区新生代地幔捕掳体岩性主要为尖晶石二辉橄榄岩,矿物组成有橄榄石(Fo89-91)、单斜辉石(Wo43-49En44-49Fs3-11)、斜方辉石(Wo0.7-2.2En88-91Fs8-11)和铬尖晶石(Cr6#-20)。橄榄岩结构以碎斑结构为主,除此还可见海绵边结构、重结晶结构、粗粒结构和变晶结构,部分橄榄石发育膝折带和伊丁石化现象,这些特征暗示该区地幔经历了较强烈的熔体-岩石圈相互作用和复杂的演化过程。大地构造位置上,阿巴嘎与大兴安岭哈拉哈河-绰尔河及五大连池-科洛同处在兴蒙造山带上,但阿巴嘎表现出与华北克拉通西部北缘相似的热状态及饱满型-过渡型的岩石圈地幔性质,区别于大兴安岭中部具有古老残留的岩石圈地幔,暗示着兴蒙造山带之下的岩石圈地幔存在时空上的不均一性。而这种大尺度岩石圈地幔的不均一性可能与软流圈-岩石圈相互作用程度、上地幔复杂的地质演化及兴蒙造山带内部不同块体的活动强度、时间等性质有关。  相似文献   

16.
High-temperature peridotite massifs occur as lensoid bodies with high-pressure granulites in the southern Bohemian massif. In lower Austria the peridotites comprise garnet lherzolites lacking primary spinel, rare garnet and garnet-spinel harzburgites, and harzburgites containing Cr-rich primary spinel instead of garnet. These phase assemblages suggest initial high-pressure equilibration and are consistent with results from garnet-orthopyroxene geobarometry indicating equilibration at around 3–3.5 GPa. Maximum temperature estimates obtained on core compositions of coexisting minerals from the peridotites are not higher than ca. 1100 °C. In contrast, pyroxene megacryst compositions, garnet exsolution textures in the garnet pyroxenites, and results from geothermometry indicate much higher original equilibration temperatures in most of the pyroxenites (up to 1400 °C). High temperatures, modal zoning, the occasional presence of Mg-rich garnetites and chemical evidence suggest that the pyroxenites are cumulates which crystallized from low-degree melts derived from the sub-lithospheric mantle. Isothermal interpolation of the high temperatures to an upper mantle adiabat suggests that the melts were derived from a minimum depth of 180–200 km. The formation of small garnet II grains and garnet exsolution lamellae in the pyroxenites and pyroxene megacrysts may reflect isobaric cooling of the cumulates from temperatures above 1400 °C to ca. 1100–1200 °C (at 3–3.5 GPa) to approach the ambient lithospheric isotherm. This model differs from other models in which the formation of garnet II was explained by an increase in pressure during cooling in a subduction zone. Isobaric cooling was followed by near-isothermal decompression from 3–3.5 GPa to 1.5–2 GPa at 1000–1200 °C, as indicated by the increase of Al in pyroxenes near garnet. Further cooling in the spinel lherzolite stability field is indicated by spinel exsolution lamellae in pyroxenes from lherzolites. The formation of symplectites and kelyphites indicate sub-millimetre scale re-equilibration during exhumation in the course of the Carboniferous collision in the Bohemian massif. The peridotite massifs represent fragments of normal (non-cratonic) lithospheric mantle from a Paleozoic convergent plate margin. Received: 22 July 1996 / Accepted 28 February 1997  相似文献   

17.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

18.
东波超镁铁岩体产在雅鲁藏布江缝合带的西段,与周边白垩纪沉积岩地层和火山岩以断层接触.航磁资料显示该岩体约400km2规模,地表出露连续,地下有一定延深.超镁铁岩体由亏损的地幔橄榄岩组成,主要有高镁的方辉橄榄岩、纯橄岩和少量二辉橄榄岩.方辉橄榄岩和二辉橄榄岩中橄榄石和斜方辉石属高镁型,分别为Fo=89.5~91.5和Mg#=90~91.5.但二辉橄榄岩中的Al2O3和CaO含量明显高于方辉橄榄岩.方辉橄榄岩中单斜辉石Mg#=92~95,二辉橄榄岩的Mg#=92~93,两者的值也重叠.二辉橄榄岩中的Al2O3和CaO含量要明显高于方辉橄榄岩.这些均为阿尔卑斯型地幔橄榄岩的典型特征.纯橄岩中的橄榄石Fo=92~93.2,其斜方辉石和单斜辉石的Mg#=~93,但Al2O3和CaO的含量比方辉橄榄岩和二辉橄榄岩的低.三种岩石的成分变化规律,反映了地幔部分熔融程度的差异.二辉橄榄岩铬尖晶石的Cr#值20~30,反映为典型深海橄榄岩特征,指示MOR环境.与其不同的是,方辉橄榄岩的铬尖晶石的Cr#=20~75,指示MOR和SSZ两者兼有环境.岩石的原始地幔标准化的REE和微量元素蛛网图模式支持了上述的认识.东波地幔橄榄岩中的岩石学特征与产有大型铬铁矿床的罗布莎地幔橄榄岩可对比,岩体中已多处发现块状铬铁矿石,其铬铁矿的Cr2O3含量56%~59%,表明东波是寻找铬铁矿大矿和富矿甚具前景的一个超镁铁岩体.  相似文献   

19.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

20.
This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65–0.68 and 0.26–0.33, respectively) compared with spinel from the dunites (Mg# = 0.56–0.64 and Cr# = 0.38–0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7–92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10–12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号