首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
论东亚大陆的构造翘变:燕山运动的全球意义   总被引:84,自引:3,他引:84  
东亚大陆是在印支期(250~220Ma)由诸多微陆块拼接而成,曾形成巨型的岩石圈(根)其中陆块碰撞带岩石圈根可能深达200余千米或更深,俯冲的陆壳岩石曾深达约100km,并发生超高压变质作用。当时中国东部上升为高原(5000~6000m),西部为特提斯海,构成东高西低的地貌景观。大约在160~150Ma前后,亚洲东部岩石圈发生巨量减薄,山根垮塌,导致软流圈地幔侧向上涌补偿。形成巨量的火山岩和花岗岩  相似文献   

2.
中国的全球构造位置和地球动力系统   总被引:8,自引:0,他引:8  
任纪舜  赵磊  徐芹芹  朱俊宾 《地质学报》2016,90(9):2100-2108
现今之中国位于亚洲大陆东南部,西太平洋活动带中段;在全球板块构造图上,中国位于欧亚板块的东南部,南为印度板块,东为太平洋板块和菲律宾海板块。地质历史上,以中朝、扬子、塔里木等小克拉通为标志的中国主体属于冈瓦纳和西伯利亚两个大陆之间的转换(互换)构造域:古生代时期,位于古亚洲洋之南,属冈瓦纳结构复杂的大陆边缘;中生代阶段,位于特提斯之北,属劳亚大陆的一部分。显生宙中国大地构造演化依次受古亚洲洋、特提斯-古太平洋、太平洋-印度洋三大动力体系之控制,形成古亚洲洋、特提斯和太平洋三大构造域。不论古亚洲洋,还是特提斯,都不是结构简单的大洋盆地,而是由一系列海底裂谷带(小洋盆带)和众多微陆块组合而成的结构复杂的洋盆体系。加之中、新生代的太平洋构造域和特提斯构造域叠加在古生代的古亚洲洋构造域之上,使中国地质构造图像在二维平面上呈现镶嵌构造,在三维空间上呈现立交桥式结构,使中国不仅是亚洲,也是全球构造最复杂的一个区域。不同阶段的地球动力体系在中国的叠加、复合,使多旋回构造-岩浆和成矿作用成为中国地质最突出的特征。因而中国的造山带大多是多旋回复合造山带,成矿(区)带大多是多旋回复合成矿(区)带,大型含油气盆地大多是多旋回叠合盆地。  相似文献   

3.
4.
论塔里木环式弧形构造系统   总被引:1,自引:1,他引:1  
本文以遥感地质影像为资料,以板块开合构造理论为指导,充分应用“RS-GIS-GPS”空间遥感技术,对塔里木盆地是其周边地区的构造地质进行了系统,综合调查研究,提出了该区为“内,中,外三环体和三环带”的塔里木环式弧形构造系统的大地构造格局,着重论述了塔里木环式弧形构造系统的依据,特征,形成与演化,以及对矿产资源,地质环境的控制规律;对所提出的“环弧成矿带”(环弧地质环境块(带)”发现的环绕塔里木盆地  相似文献   

5.
The structure of the Donets Folded Structure underwent a complicated evolution, which included stages of extension, the origin of rift troughs, compression, collision, inversion uplifts, orogenesis, and stages of stabilization and neotectonic reactivation. The paper presents data on the regional tectono-stratigraphic Late Proterozoic–Cenozoic complexes of the Donets Folded Structure, its magmatic complexes, and their setting in this structure, which is identified using geodynamic and paleotectonic analysis. The paper also reports data on the minerageny of the magmatic complexes, which are indicators of tectonic processes and provide guidelines in exploring for and assessing mineral deposits.  相似文献   

6.
全球钾盐矿床分布广泛,总储量达35×10~8t,是最重要的蒸发岩型矿床之一,主要分布在加拿大、白俄罗斯、俄罗斯、中国、美国、智利以及德国等地。文章分析了全球钾盐资源分布的时空特征,认为其主要以固体矿床形式分布于北半球海相、海陆相蒸发盐盆地中,主要成钾时期为寒武系、泥盆系、二叠系、侏罗系和白垩系。其中古生代的钾盐资源规模较大,分布于地壳相对稳定的板内坳陷区和板块边缘的坳陷带;而中新生代钾盐盆地在板内多位于拉张区域,而在板块边界上则可出现在伸展区或前陆盆地。结合古板块再造、古地理与古气候分析,认为全球钾矿资源形成和时空分布的因素包括:(1)古气候带。全球重要的钾盐矿床均形成于干旱气候,而其它无法保持长期干旱的气候环境,难以沉积钾矿资源;(2)全球海平面波动。海平面由高水位向低水位转换的海退环境最有利于钾盐的形成,在全球海平面处于非峰值且比较平稳的时期形成的钾盐较多;(3)大地构造环境。全球构造比较平静的时期(造山活动初期或造山后)与地区容易形成、聚集钾盐,而在造山事件频繁发生的时期钾盐形成较少。在此基础上,进一步讨论了中国钾矿资源分布广、规模小、分布集中的原因,即在全球最重要的钾盐沉积期,中国华北、华南与塔里木三大主要板块不能同时满足干旱环境和被浅海覆盖两个条件,不利于蒸发岩的形成。  相似文献   

7.
International Journal of Earth Sciences - The Anti-Atlas belt of Morocco extends ENE–WSW, over more than 600 km, from the Atlantic margin in the west to the interior of the African...  相似文献   

8.
池顺良 《地质论评》2011,57(4):473-479
大陆深俯冲与快速折返假说提出20年来一直存在争论.大陆深俯冲中需要地幔对流拖拽,但存在大陆根的事实和30亿年中在上地幔固定深度缓慢生长的大颗粒金刚石实物证据,表明地幔并未发生大规模对流.目前大地构造学的主流理论本质上是"热机类理论",地幔热对流是这部热机的驱动原动力.对地幔对流的质疑表明,摆脱"热机类理论"的束缚,开展...  相似文献   

9.
Dike swarms are generally ascribed to intrusion of mantle-source magma result from extension. Basic dike swarms around the Shanxi-Hebei-Inner Mogolia borders in the northern peripheral area of the North China Craton can be divided into five age groups according to isotopic dating: 1800-1700 Ma, 800-700 Ma, 230 Ma, 140-120 Ma, and 50-40 Ma. Geological, petrological and isotope geochemical features of the five groups is investigated in order to explore the variation of the mantle material composition in the concerned area with time. And the various extensional activities reflected by the five groups of dike swarms are compared with some important tectonic events within the North China Craton as well as around the world during the same period.  相似文献   

10.
The late-Palaeozoic to Cenozoic stratigraphic and structural record of the southwestern margin of the Bohemian massif and its extension beneath the southward adjacent Molasse basin shows that it is controlled by a system of basement-involving faults which came into evidence during Stephanian– Autunian times and which were subsequently repeatedly reactivated. Thick Permo-Carboniferous clastics accumulated in fault-bounded transtensional basins aligned with the southwestern Bohemian border zone (SWBBZ). Following late-Autunian deformation of these basins, the SWBBZ was overstepped by late-Permian to Late Jurassic platform sediments, reflecting tectonic stability. During the Early Cretaceous the SWBBZ was strongly reactivated, causing disruption and erosion of its Mesozoic sedimentary cover. Sedimentation resumed in the area of the SWBBZ during late Early and Late Cretaceous with clastic influx from the Bohemian massif reflecting gradually increasing tectonic activity along the SWBBZ. During the Late Senonian and Paleocene transpressional deformations resulted in upthrusting of major basement blocks. In the Molasse basin such structures are sealed by transgressive Late Eocene marine strata. Mio-Pliocene uplift of the Bohemian massif, involving mild reactivation of the SWBBZ, is related to the development of the volcano-tectonic Eger zone. The structural configuration of the SWBBZ is largely the result of Late Senonian–Paleocene compressional intraplate tectonics which play a major role in the structural framework of the northern Alpine and Carpathian foreland.  相似文献   

11.
12.
长乐-南澳构造带变质变形期次划分及时代厘定   总被引:1,自引:0,他引:1  
石建基 《福建地质》2011,30(3):189-199
长乐-南澳构造带中发育有晚侏罗世早期、晚侏罗世晚期及早白垩世等3个不同时期的变质变形侵入岩。不同期次侵入岩具有不同的变质变形特征。根据糜棱岩的空间分布、糜棱叶理的切割关系等,表明构造带在中生代发生了3期韧性剪切变形及相关的动力变质作用。第一期为(北西西-南东东向)右行-推覆韧性剪切,具低角闪岩相变质、深部构造层次长石相...  相似文献   

13.
There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have been found frequently during recent geological surveys. This paper reviews the studies of regional Mesozoic bimodal rocks, and concludes that they can be subdivided into three stages, i.e., the Early Jurassic (209-170 Ma, the first (Ⅰ) stage), the Late Jurassic-early Early Cretaceous (154-121 Ma, the second (Ⅱ) stage), and the late Early Cretaceous-Late Cretaceous (115-85 Ma, the third (Ⅲ) stage). These three stages of bimodal rocks were formed in different tectonic settings, and are important indicators for regional Mesozoic tectonic evolution.  相似文献   

14.
15.
Aeromagnetic surveys help reveal the geometry of Precambrian terranes through extending the mapping of structures and lithologies from well-exposed areas into areas of younger cover. Continent-wide aeromagnetic compilations therefore help extend geological mapping beyond the scale of a single country and, in turn, help link regional geology with processes of global tectonics. In Africa, India and related smaller fragments of Gondwana, the margins of Precambrian crustal blocks that have escaped (or successfully resisted) fracture or extension in Phanerozoic time can often be identified from their aeromagnetic expression. We differentiate between these rigid pieces of Precambrian crust and the intervening lithosphere that has been subjected to deformation (usually a combination of extension and strike-slip) in one or more of three rifting episodes affecting Africa during the Phanerozoic: Karoo, Early Cretaceous and (post-) Miocene. Modest relative movements between adjacent fragments in the African mosaic, commensurate with the observed rifting and transcurrent faulting, lead to small adjustments in the position of sub-Saharan Africa with respect to North Africa and Arabia. The tight reassembly of Precambrian sub-Saharan Africa with Madagascar, India, Sri Lanka and Antarctica (see animation in http://kartoweb.itc.nl/gondwana) can then be extended north between NW India and Somalia once the Early Cretaceous movements in North Africa have been undone. The Seychelles and smaller continental fragments that stayed with India may be accommodated north of Madagascar. The reassembly includes an attempt to undo strike-slip on the Southern Trans-Africa Shear System. This cryptic tectonic transcontinental corridor, which first formed as a Pan-African shear belt 700–500 Ma, also displays demonstrable dextral and sinistral movement between 300 and 200 Ma, not only evident in the alignment of the unsuccessful Karoo rifts now mapped from Tanzania to Namibia but also having an effect on many of the eventually successful rifts between Africa-Arabia and East Gondwana. We postulate its continuation into the Tethys Ocean as a major transform or megashear, allowing minor independence of movements between West Gondwana (partnered across the Tethys Ocean with Europe) and East Gondwana (partnered with Asia), Europe and Asia being independent before the 250 Ma consolidation of the Urals suture. The relative importance of primary driving forces, such as subduction ‘pull’, and ‘jostling’ forces experienced between adjacent rigid fragments could be related to plate size, the larger plates being relatively closely-coupled to the convecting mantle in the global scheme while the smaller ones may experience a preponderance of ‘jostling’ forces from their rigid neighbours.  相似文献   

16.
The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone consists of several regional fault belts of various ages and orientations. We have categorized the faults into four age groups based on field investigations. The Neoproterozoic faults are northeast striking. They start from the northeast Jiangxi Province and extend northeastward to Fuchuan in Anhui Province, the same location of the northeast Jiangxi-Fuchuan ophiolite belt. The faults probably acted? during the Neoproterozoic as a boundary fault zone of a plate or a block suture with mélange along the faults. The nearly east-west- or east-northeast-striking faults are of Silurian ages (40Ar/39Ar age 429 Ma). This group includes the Qimen-Shexian fault and the Jiangwang-Jiekou ductile shear belt. They represent a major tectonic boundary in the basement because the two sides of the fault have clear dissimilarities. The third group of faults is north-northeast striking, having formed since the early-middle Triassic with 40Ar/39Ar ages of 230–254 Ma. They form a fault belt starting from Yiyang in northern Jiangxi and connect with the Wucheng as well as the Ningguo-Jixi faults. This fault belt is a key fault-magmatic belt controlling the formation of Jurassic-Cretaceous red basins, ore distribution, magmatic activity, and mineralization. When it reactivated during the late Cretaceous, the belt behaved as a series of reverse faults from southeast to northwest and composed the fourth fault group. Therefore, classifying the Wan-Zhe-Gan fault zone into four fault groups will help in the analysis of the tectonic evolution of the eastern segment of the Jiangnan orogen since the Neoproterozoic era.  相似文献   

17.
板块体制的出现与全球地质环境的突变   总被引:1,自引:0,他引:1  
匡耀求  张本仁 《湖南地质》1994,13(3):181-185
从大洋中脊的扩张到活动陆缘处的洋壳俯冲消成和岛弧型地壳增生,这是板块构造理论的精髓部分,这种板块体制的地壳演化何时开始出现呢?通过对与板块体制有关的壳幔物质循环和水圈—岩石圈—大气圈相互作用的分析,作者认为太古代与元古代之交(26~23亿年)全球性地质环境的突变是板块体制出现的标志。  相似文献   

18.
正The primary tectonic setting of dyke swarms,especially those formed in the pre-Cambrian era,are under controversy(Peng et al.,2005).However,Mesozoic and Cenozoic rift systems,which are supposed to be the  相似文献   

19.
20.
板块构造理论形成以来,不同板块之间的相对作用得到深入阐述,但对多板块聚合的运动过程的研究常被忽略。依据全球古地磁数据和古板块再造,可以获得板块运动轨迹,这些板块轨迹指示全球主要大陆在志留纪(约443Ma)-二叠纪(约250Ma)期间发生向北半球中纬地区的汇聚,具体表现为在泛大陆的形成过程中,全球板块运动具有顺时针旋转的特征,并且大板块(南美、波罗的、西伯利亚、澳大利亚等)纬向移动速率和板块自转速率明显高于小陆块的(华北、塔里木、扬子陆块等)。一些主要陆块显示不对称的"e"型顺时针旋转的漩涡轨迹,汇聚中心在中亚地区,以哈萨克斯坦马蹄形的最终形成和保留为标志。板块聚合的涡旋状运动轨迹,受控于上地幔流动过程产生长期的漩涡运动。这种对流运动在一定时间内(晚古生代)保持相对稳态的流动形式,导致泛大陆的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号