首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The spatial distributions of the most recently discovered ultra-faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation, we pay special attention to the selection bias introduced due to the limited sky coverage of Sloan Digital Sky Survey (SDSS). We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also note a deficit of satellite galaxies with Galactocentric distances larger than  100 kpc  that are away from the DoS of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the DoS are optical manifestations of a phase-space correlation of satellite galaxies.  相似文献   

2.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

3.
A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanism of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up of ‘mono-abundance populations’ (MAPs), both for dynamical modeling and for constraining the Milky Way’s evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and point out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way’s dark-matter distribution and formation history.  相似文献   

4.
We use an N -body/hydrodynamic simulation to forecast the future encounter between the Milky Way and the Andromeda galaxies, given present observational constraints on their relative distance, relative velocity, and masses. Allowing for a comparable amount of diffuse mass to fill the volume of the Local Group, we find that the two galaxies are likely to collide in a few billion years – within the Sun's lifetime. During the interaction, there is a chance that the Sun will be pulled away from its present orbital radius and reside in an extended tidal tail. The likelihood for this outcome increases as the merger progresses, and there is a remote possibility that our Sun will be more tightly bound to Andromeda than to the Milky Way before the final merger. Eventually, after the merger has completed, the Sun is most likely to be scattered to the outer halo and reside at much larger radii (>30 kpc). The density profiles of the stars, gas and dark matter in the merger product resemble those of elliptical galaxies. Our Local Group model therefore provides a prototype progenitor of late-forming elliptical galaxies.  相似文献   

5.
Summary. Due to the foreground extinction of the Milky Way, galaxies appear increasingly fainter the closer they lie to the Galactic Equator, creating a “zone of avoidance” of about 25% in the distribution of optically visible galaxies. A “whole-sky” map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor region. Various dynamically important structures behind the Milky Way have only recently been made “visible” through dedicated deep surveys at various wavelengths. The wide range of observational searches (optical, near infrared, far infrared, radio and X-ray) for galaxies in the Zone of Avoidance are reviewed, including a discussion on the limitations and selection effects of these partly complementary approaches. The uncovered and suspected large-scale structures are summarized. Reconstruction methods of the density field in the Zone of Avoidance are described and the resulting predictions compared with observational evidence. The comparison between reconstructed density fields and the observed galaxy distribution allow derivations of the density and biasing parameters and b. Received 4 April 2000 / Published online 18 July 2000  相似文献   

6.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

7.
Summary. Hubble's (1936, p. 125) view that the Local Group (LG) is “a typical, small group of nebulae which is isolated in the general field” is confirmed by modern data. The total number of certain and probable Group members presently stands at 35. The half-mass radius of the Local Group is found to be kpc. The zero-velocity surface, which separates the Local Group from the field that is expanding with the Hubble flow, has a radius Mpc. The total mass of the LG is . Most of this mass appears to be concentrated in the Andromeda and Milky Way subgroups of the LG. The total luminosity of the Local Group is found to be :. This yields a mass-to-light ratio (in solar units) of . The solar motion with respect to the LG is \,km s, directed towards an apex at , and . The velocity dispersion within the LG is km s. The galaxies NGC 3109, Antlia, Sextans A and Sextans B appear to form a distinct grouping with kpc relative to the LG, that is located beyond the LG zero-velocity surface at a distance of 1.7 Mpc from the Local Group centroid. The luminosity distribution of the LG has a slope . This value is significantly less negative than that which is found in rich clusters of galaxies. The luminosity distribution of the dwarf spheroidal galaxies is steeper than that for dwarf irregulars. Furthermore the dSph galaxies are strongly concentrated within the Andromeda and Milky Way subclusters of the Local Group, whereas the majority of dIr galaxies appear to be free-floating members of the LG as a whole. With the possible exception of Leo I and Leo A, most LG members appear to have started forming stars simultaneously Gyr ago. Many of the galaxies, for which evolutionary data are available, appear to have shrunk with time. This result is unexpected because Hubble Space Telescope observations appear to show galaxies at to be smaller than they are at . In the Large Magellanic Cloud the rate of cluster formation was low for a period that extended from Gyr to Gyr ago. The rate of cluster formation may have increased more rapidly 3–5 Gyr ago, than did the rate of star formation. The reason for the sudden burst of cluster formation in the LMC Gyr ago remains obscure. None of the dwarf galaxies in the LG appears to have experienced a starburst strong enough to have produced a “boojum”. Received 14 April 1999  相似文献   

8.
介绍了本星系群中最大的旋涡星系M31(仙女星系)的基本观测性质。与银河系结构类似,M31的基本成分包括:核、核球、盘和晕。对以上各个成分的观测和研究进展分别作了综述,重点是盘的星族成分和恒星形成历史,以及球状星团的分布和晕的形成历史。同时与银河系的各种观测特征和形成机制作了详细的比较。  相似文献   

9.
Stellar abundance pattern of n-capture elements such as barium is used as a powerful tool to infer how the star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to that in Galactic metal-poor stars. The common feature of these two correlations can be realized by our in homogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ∼ 26 km s-1. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value ≲ 10 km s-1 by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ∼ 25 times larger than at present. In this model, supernovae immediately after the end of the star formation can expel the remaining gas over the gravitational potential of the dSph galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We use the very large Millennium Simulation of the concordance Λ cold dark matter cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral–spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5 and 95 per cent points of the distribution of this ratio are separated by a factor of 5.7. Here, we define true mass as the sum of the 'virial' masses, M 200, of the two dominant galaxies. For present best values of the distance and approach velocity of Andromeda, this leads to a median likelihood estimate of the true mass of the Local Group of  5.27 × 1012 M  or  log  M LG/M= 12.72  , with an interquartile range of [12.58, 12.83] and a 5–95 per cent range of [12.26, 13.01]. Thus, a 95 per cent lower confidence limit on the true mass of the Local Group is  1.81 × 1012 M  . A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of  2.43 × 1012 M  with a 95 per cent lower confidence limit of  0.80 × 1012 M  .  相似文献   

11.
We use updated data on distances and velocities of galaxies in the proximity of the Local Group (LG) in order to establish properties of the local Hubble flow. For 30 neighbouring galaxies with distances  0.7 < D LG < 3.0  Mpc, the local flow is characterized by the Hubble parameter   H loc= (78 ± 2) km s−1 Mpc−1  , the mean-square peculiar velocity  σv= 25 km s−1  , corrected for errors of radial velocity measurements  (∼4 km s−1)  and distance measurements  (∼10 km s−1)  , as well as the radius of the zero-velocity surface   R 0= (0.96 ± 0.03)  Mpc. The minimum value for σv is achieved when the barycentre of the LG is located at the distance   Dc = (0.55 ± 0.05) D M31  towards Andromeda galaxy (M31) corresponding to the Milky Way (MW)-to-M31 mass ratio   M MW/ M M31≃ 4/5  . In the reference frame of the 30 galaxies at 0.7–3.0 Mpc, the LG barycentre has a small peculiar velocity  ∼(24 ± 4) km s−1  towards the Sculptor constellation. The derived value of R 0 corresponds to the total mass   M T(LG) = (1.9 ± 0.2) 1012 M  with  Ωm= 0.24  and a topologically flat universe, a value in good agreement with the sum of virial mass estimates for the MW and M31.  相似文献   

12.
The fossil record of the Milky Way indicates an evolution including periodic accretions of smaller galaxies and clusters, consistent with hierarchical models of galaxy formation. I discuss three observational programs that demonstrate that the phase space distribution of stars, clusters and dwarf galaxies in the Galactic halo contains degrees of substructure left by the débris of tidally disrupted stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures.We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied.We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth’s position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth’s position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth.Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.  相似文献   

14.
Motivated by recent developments impacting our view of Fermi’s Paradox (the absence of extraterrestrials and their manifestations from our past light cone), we suggest a reassessment of the problem itself, as well as of strategies employed by the various SETI projects so far. The need for such reassessment is fueled not only by the failure of SETI thus far, but also by great advances recently made in astrophysics, astrobiology, computer science and future studies. As a result, we consider the effects of the observed metallicity and temperature gradients in the Milky Way galaxy on the spatial distribution of hypothetical advanced extraterrestrial intelligent communities. While properties of such communities and their sociological and technological preferences are, obviously, unknown at present, we assume that (1) they operate in agreement with the known laws of physics and (2) at some point in their history they typically become motivated by a meta-principle embodying the central role of information-processing; a prototype of the latter is the recently suggested Intelligence Principle of Steven J. Dick. There are specific conclusions of practical interest to astrobiological and SETI endeavors to be drawn from the coupling of these reasonable assumptions with the astrophysical and astrochemical structure of the spiral disk of our galaxy. In particular, we suggest that the outer regions of the Galactic disk are the most likely locations for advanced SETI targets, and that sophisticated intelligent communities will tend to migrate outward through the Galaxy as their capacities of information-processing increase, for both thermodynamical and astrochemical reasons. However, the outward movement is limited by the decrease in matter density in the outer Milky Way. This can also be regarded as a possible generalization of the galactic habitable zone (GHZ), concept currently being investigated in astrobiology.  相似文献   

15.
We analyse the phase-space structure of simulated thick discs that are the result of a 5:1 mass-ratio merger between a disc galaxy and a satellite. Our main goal is to establish what would be the imprints of a merger origin for the Galactic thick disc. We find that the spatial distribution predicted for thick-disc stars is asymmetric, seemingly in agreement with recent observations of the Milky Way thick disc. Near the Sun, the accreted stars are expected to rotate more slowly, to have broad velocity distributions and to occupy preferentially the wings of the line-of-sight velocity distributions. The majority of the stars in our model thick discs have low eccentricity orbits (in clear reference to the pre-existing heated disc) which give rise to a characteristic (sinusoidal) pattern for their line-of-sight velocities as a function of galactic longitude. The z -component of the angular momentum of thick-disc stars provides a clear discriminant between stars from the pre-existing disc and those from the satellite, particularly at large radii. These results are robust against the particular choices of initial conditions made in our simulations.  相似文献   

16.
We run numerical simulations of the disruption of satellite galaxies in a Galactic potential to build up the entire stellar halo, in order to investigate what the next generation of astrometric satellites will reveal by observing the halo of the Milky Way. We generate artificial DIVA , FAME and GAIA halo catalogues, in which we look for the signatures left by the accreted satellites. We develop a method based on the standard Friends-of-Friends algorithm applied to the space of integrals of motion. We find this simple method can recover about 50 per cent of the different accretion events, when the observational uncertainties expected for GAIA are taken into account, even when the exact form of the Galactic potential is unknown. The recovery rate for DIVA and FAME is much smaller, but these missions, like GAIA , should be able to test the hierarchical formation paradigm on our Galaxy by measuring the amount of halo substructure in the form of nearby kinematically cold streams with, for example, a two-point correlation function in velocity space.  相似文献   

17.
We reviewed the recent progress in the field of stellar/galactic archeology, which is a study of the relics from the early galaxy. The oldest and most pristine objects that can be observed in the galaxy are the low mass metal poor stars of the Milky Way. They were formed during the early phases, when the ISM might have been polluted only by the Pop-III supernovae. With the recent large spectroscopic surveys (e.g. HK survey by Beers and collaborators, the Hamburg-ESO survey by Christlieb and collaborators and Sloan Digital Sky Survey) it has been possible to get clues on the nature of the first stars that has contributed to the heavy elements. Most of these metal-poor low mass stars also retain their signature of the early dynamical evolution of the galaxy, which can be studied through their orbits around the galaxy and spatial distribution. Here, we discuss the connection between the chemical and the kinematical properties of metal-poor stars in order to probe the early galaxy formation. We also discuss about the globular clusters, the satellite galaxies around the Milky Way and its possible contribution to the formation of the galaxy halo.  相似文献   

18.
We study the gravitational lensing effects of spiral galaxies by taking a model of the Milky Way and computing its lensing properties. The model is composed of a spherical Hernquist bulge, a Miyamoto–Nagai disc and an isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give rise to four different imaging geometries. They are (i) three images on one side of the galaxy centre ('disc triplets'), (ii) three images with one close to the centre ('core triplets'), (iii) five images and (iv) seven images. Neglecting magnification bias, we show that the core triplets, disc triplets and fivefold imaging are roughly equally likely. Even though our models contain edge-on discs, their image multiplicities are not dominated by disc triplets. The halo is included for completeness, but it has a small effect on the caustic structure, the time delays and brightnesses of the images.
The Milky Way model has a maximum disc (i.e. the halo is not dynamically important in the inner parts). Strong lensing by nearly edge-on disc galaxies breaks the degeneracy between the relative contributions of the disc and halo to the overall rotation curve. If a spiral galaxy has a submaximum disc, then the astroid caustic shrinks dramatically in size, whilst the radial caustic shrinks more modestly. This causes changes in the relative likelihood of the image geometries, specifically (i) core triplets are now ∼9/2 times more likely than disc triplets, (ii) the cross-section for threefold imaging is reduced by a factor of ∼2/3, whilst (iii) the cross-section for fivefold imaging is reduced by ∼1/2. Although multiple imaging is less likely (the cross-sections are smaller), the average total magnification is greater. The time delays are smaller, as the total projected lensing mass is reduced.  相似文献   

19.
Large samples of field horizontal branch (FHB) stars make excellent tracers of the Galactic halo; by studying their kinematics, one can infer important physical properties of our Galaxy. Here we present the results of a medium-resolution spectroscopic survey of 530 FHB stars selected from the Hamburg/ESO survey. The stars have a mean distance of ∼7 kpc and thus probe the inner parts of the Milky Way halo. We measure radial velocities from the spectra in order to test the model of Sommer-Larsen et al., who suggested that the velocity ellipsoid of the halo changes from radially dominated orbits to tangentially dominated orbits as one proceeds from the inner to the outer halo. We find that the present data are unable to discriminate between this model and a more simple isothermal ellipsoid; we suggest that additional observations towards the Galactic Centre might help to differentiate them.  相似文献   

20.
The traditional paradigm of a Galactic origin of gamma-ray bursts (GRBs) suffered a major reduction in popularity when BATSE revealed an isotropic but radially inhomogeneous distribution of GRBs. The lack of pronounced galactic anisotropies places severe constraints on models including significant source contributions from the usual disk, bulge, or halo components of the Milky Way. Although models can be designed to preserve the local disk origin, a perhaps more promising approach invokes a very extended Galactic halo. Populating such halos with neutron stars requires very high velocities. Injection of such neutron stars might be restricted to a phase of the early galaxy, or it may continue to the present. We discuss several observational constraints that address the question presented in the title.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号