首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
钢丝网复合橡胶减隔震支座是一种可以翘曲滚动实现剪切大变形的新型减隔震支座,主要适用于中小跨径桥梁。为了探究钢丝网复合橡胶减隔震支座的减隔震性能及恢复力特性,本文对其进行拟静力试验,得到支座滞回曲线,反映出较好的耗能能力,在试验数据基础上利用最小二乘法拟合提出支座的三段线性恢复力模型;为了推广该支座的实桥应用,实现其在实桥抗震验算有限元建模中的模拟,本文在SAP2000有限元程序中采用多段线性塑性连接单元的Kinematic模型模拟支座,重现拟静力试验加载过程,对比支座有限元计算滞回曲线和试验滞回曲线,模拟结果良好。  相似文献   

2.
为了研究铅芯橡胶隔震支座的阻尼分布对平扭耦联隔震体系隔震效果的影响,本文对一个三层两跨钢框架,通过调整上部结构负重块位置及下部铅芯橡胶隔震支座的分布位置,进行不同偏心工况下平扭耦联隔震体系地震模拟振动台试验,获得了不同偏心工况、不同阻尼分布情况下结构位移和加速度的时程曲线。试验和分析表明:隔震层阻尼中心与上部结构的质心位置接近,或者增大隔震层的阻尼半径,可显著地降低上部结构的扭转反应。  相似文献   

3.
桥梁高阻尼橡胶支座力学性能试验研究   总被引:11,自引:3,他引:8  
目前高阻尼橡胶支座在国内桥梁工程建设中使用尚处于起步阶段。本文对高阻尼橡胶支座的力学性能进行了系统的试验研究,研究了该支座的竖向刚度、水平刚度、阻尼比及水平剪切大变形等。该支座的推广应用,将使桥梁结构在地震(中震、大震)时降低地震作用力,对整体结构能进行限位,有效地控制桥梁结构的地震反应,达到桥梁结构隔震减震的目的,弥补我国桥梁结构中现在所用支座之不足,同时可降低成本,节省使用空间,便于施工。  相似文献   

4.
针对叠层橡胶支座基础隔震体系的性能、分析与设计等,介绍了由笔者所在课题组完成的寒冷环境下叠层橡胶隔震支座力学性能试验研究的成果、实振型分解法分析非比例阻尼隔震结构动力响应、隔震结构动力分析软件、橡胶隔震器与地下室悬臂柱串联后所组成的结构系统动力稳定性、高烈度区使用智能隔震体系的控制算法及甘肃省隔震构造图集等研究成果。同时介绍了本课题组负责设计的甘肃省叠层橡胶支座隔震体系的若干工程简况。  相似文献   

5.
左志鹏  王义强 《地震学刊》2013,(Z1):154-160
介绍了桥梁减隔震技术的基本原理,系统地归纳了目前常用的减隔震装置的隔震机理和力学模型。以外砂河大桥为实际工程背景,进行了采用减隔震技术的桥梁的有限元分析,介绍了下部结构的强度验算方法,研究了高阻尼橡胶支座和粘滞阻尼器对该桥引桥减隔震的效果。隔震装置采用非线性弹簧单元模拟,利用非线性动力时程分析,在该桥采用了高阻尼橡胶支座后研究其地震响应,然后与引入阻尼器后结构的地震响应进行了比较。分析表明:把桥梁结构和隔震装置作为整体结构考虑时,可达到很好的减隔震效果,使内力分配合理,并且减小结构的相对位移。  相似文献   

6.
本文针对建筑物使用的传统叠层橡胶隔震支座在使用中存在的一些问题,引进了不锈钢丝金属橡胶材料,设计并制作了新型隔震支座,对比研究了三种不同高宽比支座在不同频率、不同加载幅值下的水平剪切性能,并且研究了支座的轴向承载力以及施加轴向荷载对金属橡胶隔震支座剪切迟滞性能的影响。研究结果表明:加载频率对金属橡胶隔震支座剪切性能影响较小,金属橡胶隔震支座的耗能能力随着加载幅值的增大而增大,且随着高宽比的减小而增大;等效剪切刚度和等效阻尼比随着加载幅值、高宽比的增大而减小;支座具有较大的轴向承载能力,在施加轴向荷载后,金属橡胶隔震支座的剪切耗能能力大大增强。  相似文献   

7.
中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究   总被引:5,自引:1,他引:5  
本文详细地研究了各种相关因素对中国铅芯橡胶隔震支座力学性能的 影响,同时还研究了中国铅芯夹层橡胶隔震支座的长期性能。研究包括竖向压力、频率、剪切变形循环次数、温度对隔震支座刚度及阻尼等力学性能的影响;隔震支座的耐久性能诸如老化及徐变对隔震器刚度、阻尼特性及极限变形能力的影响。研究还包括水平剪切(200次)及竖向低周疲劳(10万次)试验对隔震器力学性能的影响。  相似文献   

8.
本文目的是研究各种因素对新型桥梁高阻尼隔震橡胶支座(简称HDR)水平剪切性能的影响。采用反复加载试验方法,进行了HDR支座剪应变相关性、压应力相关性、加载频率相关性、反复加载次数相关性、温度相关性、老化相关性等试验,研究了其相应因素对HDR支座滞回环面积、屈服强度、等效阻尼比、屈服后刚度、等效刚度的影响。试验结果表明,加载频率、反复加载次数、温度、老化对HDR支座表征阻尼特征的指标影响较大,而对其刚度影响相对较小。通过对试验曲线的分析,给出了G值为0.64 MPa,100%剪应变时设计等效阻尼比为12%的HDR支座的等效剪切模量、等效阻尼比、屈服强度、屈服前刚度、屈服后刚度随剪应变变化的经验公式。  相似文献   

9.
SMA-橡胶支座的力学性能试验研究   总被引:8,自引:2,他引:6  
SMA-橡胶支座是一种由叠层橡胶垫和形状记忆合金(SMA)复合而成的新型隔震支座。阐明了SMA-橡胶支座的设计思路和工作机理,通过SMA-橡胶支座实物模型的伪动力试验,考察了支座的水平和竖向刚度、耗能能力和等效阻尼比,研究了位移幅值、加载频率、竖向荷载等参数对支座力学性能的影响。研究结果表明,SMA-橡胶支座工作性能稳定,耗能能力较强,是一种性能优良的新型隔震装置。  相似文献   

10.
桥梁减震性能研究   总被引:1,自引:0,他引:1  
针对当前桥梁延性抗震及减、隔震设计的研究现状,阐述了在桥梁减、隔震设计中存在的问题,并采用编制的有限元非线性动力分析程序,对设置橡胶支座的一座简支梁桥的抗震性能进行了分析,检验了减、隔震支座的减震效果,比较了普通延性抗城和普通板式橡胶支座,铅芯橡胶支座的减震特点对减、隔震桥梁的延性地震响应特性进行了初步的探讨。  相似文献   

11.
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests.This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force.Due to their robustness and portability,individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories.Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages.To conduct a substructure online hybrid test,an extensible framework is developed,which is equipped with a generalized interface to encapsulate each substructure.Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework,simply interfaced with the boundary displacements and forces.A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated.An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments.A series of online hybrid tests are introduced,and the portability,flexibility,and extensibility of the online hybrid test system are demonstrated.  相似文献   

12.
根据结构试验理论和实验设备的特征,阐述了结构抗震试验的特点及发展,重点分析了子结构拟动力试验方法的原理、数值积分算法、加载方式和误差控制;振动台子结构试验的原理、研究成果;实时子结构的原理和时滞等混合试验方法的基本理论,以及大型通用有限元软件及远程协同试验方法在混合试验中的应用。基于各种试验方法的优势与发展,总结出混合试验技术未来的发展方向。  相似文献   

13.
A new Internet online hybrid test system, designated the ‘peer‐to‐peer (P2P) Internet online hybrid test system’, is proposed. In the system, the simulated structure is divided into multiple substructures, and each substructure is analysed numerically or tested physically in parallel at geographically distributed locations. The equations of motion are not formulated for the entire structure but for each substructure separately. Substructures are treated as highly independent systems, and only standard I/O, i.e. displacements and forces at the boundaries, are used as interfaces. A ‘Coordinator’ equipped with an iterative algorithm based on quasi‐Newton iterations is developed to achieve compatibility and equilibrium at boundaries. A test procedure, featuring two rounds of quasi‐Newton iterations and using assumed elastic stiffness, is adopted to avoid iteration for the substructure being tested physically. A fast and stable solution using a socket mechanism is developed for data exchange over the Internet. Demonstration tests applied to a base‐isolated structure was conducted, and the results are compared with an online hybrid test using the conventional test method. The results obtained from the P2P Internet hybrid test match very closely those obtained from the conventional tests. Investigations are also carried out on time consumption and control accuracy. The results show that the Internet data exchange solution using the socket mechanism is fast, and tests were completed successfully under the constructed Internet online hybrid test environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
振动台实时耦联动力试验系统构建解决方案   总被引:2,自引:1,他引:1  
实时耦联动力试验(RTDHT)是一种将物理模型试验和数值求解计算实时耦联在一起进行整体结构动力反应分析的新型结构动力试验方法。构建实时耦联动力试验系统将面临数值子结构实时计算、数据实时传输、加载器精确加载等问题。本文首先以清华大学新近建成的一套基于振动台的实时耦联动力试验系统为例,对试验系统构建中面临的问题以及相应的解决方案进行了阐述,对构建实时耦联动力试验系统提出了一些指导性的建议。随后简要介绍了利用该系统已经进行的一些实时耦联动力试验,并对实时耦联动力试验可能的应用前景进行了探讨。  相似文献   

15.
For the purpose of accurately predicting the seismic response of base-isolated structures, an analytical hysteresis model for elastomeric seismic isolation bearings is proposed. An extensive series of experimental tests of four types of seismic isolation bearings—two types of high-damping rubber bearings, one type of lead-rubber bearing and one type of silicon rubber bearing—was carried out with the objective of fully identifying their mechanical characteristics. The proposed model is capable of well-predicting the mechanical properties of each type of elastomeric bearing into the large strain range. Earthquake simulator tests were also conducted after the loading tests of the individual bearings. In order to show the validity of the proposed model, non-linear dynamic analyses were conducted to simulate the earthquake simulator test results. Good agreement between the experimental and analytical results shows that the model can be an effective numerical tool to predict not only the peak response value but also the force–displacement relationship of the isolators and floor response spectra for isolated structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
A full‐scale 5‐story steel moment frame building was subjected to a series of earthquake excitations using the E‐Defense shake table in August, 2011. For one of the test configurations, the building was seismically isolated by a hybrid system of lead‐rubber bearings and low friction roller bearings known as cross‐linear bearings, and was designed for a very rare 100 000‐year return period earthquake at a Central and Eastern US soil site. The building was subject to 15 trials including sinusoidal input, recorded motions and simulated earthquakes, 2D and 3D input, and a range of intensities including some beyond the design basis level. The experimental program was one of the first system‐level full‐scale validations of seismic isolation and the first known full‐scale experiment of a hybrid isolation system incorporating lead‐rubber and low friction bearings. Stable response of the hybrid isolation system was demonstrated at displacement demands up to 550 mm and shear strain in excess of 200%. Torsional amplifications were within the new factor stipulated by the code provisions. Axial force was observed to transfer from the lead‐rubber bearings to the cross‐linear bearings at large displacements, and the force transfer at large displacements exceeded that predicted by basic calculations. The force transfer occurred primarily because of the flexural rigidity of the base diaphragm and the larger vertical stiffness of the cross‐linear bearings relative to the lead‐rubber bearings.  相似文献   

17.
Lead rubber bearings, which have been extensively applied in many seismic isolation designs for buildings, infrastructures, and facilities worldwide, were tested under unilateral reversal loading as well as nonproportional plane loading including circular, figure-eight, and square orbits in this study. The test results indicate that unlike the unilateral hysteretic behavior, the bilateral one of lead rubber bearings is too complicated to be characterized adequately by a simplified bilinear hysteretic model. It is mainly attributed to the bilateral coupling effect, which can be clearly observed from the abnormal deformation of the mesh pattern drawn on the rubber cover during the tests. In addition, after being subjected to nonproportional plane loading, the tested bearings reveal visible permanent twisting deformation. The profiles of the cut bearings present the fracture of the inside lead plugs. Even so, the further unilateral reversal loading test results prove that the fracture might not affect the whole hysteretic behavior and mechanical properties very much. The applicability, robustness, and generalization of adopting three previously developed analytical models for describing the coupled bilateral hysteretic behavior of lead rubber bearings are further demonstrated by comparing their predictions with the nonproportional plane loading test results. Although the coefficients are identified from unilateral reversal loading tests, the three analytical models can still have an acceptable prediction capability.  相似文献   

18.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Real‐time hybrid testing is a very effective technique for evaluating the dynamic responses of rate‐dependent structural systems subjected to earthquake excitation. A smart base isolation system has been proposed by others using conventional low‐damping isolators and controllable damping devices such as magnetorheological (MR) dampers to achieve specified control target performance. In this paper, real‐time hybrid tests of a smart base isolation system are conducted. The simulation is for a base‐isolated two‐degrees‐of‐freedom building model where the superstructure and the low‐damping base isolator are numerically simulated, and the MR damper is physically tested. The target displacement obtained from the step‐by‐step integration of the numerical substructure is imposed on the MR damper, which is driven by three different control algorithms in real‐time. To compensate the actuator delay and improve the accuracy of the test, an adaptive phase‐lead compensator is implemented. The accuracy of each test is investigated by using the root mean square error and the tracking indicator. Experimental results demonstrate that the hybrid testing procedure using the proposed actuator compensation techniques is effective for investigating the control performance of the MR damper in a smart base isolation system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号