首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
MODUonONThermsurmtofdissolvedorganiccarbon.(DoC)inseawaterhasprovedtobeaddricultandcontroversialproedurepeenneretal.,l992,l993,OgawaandOgam,l992,Tanoue,l992).InterestinthemeasurernentofDOCinseaytteyintenSfomtlyinoonnographicdedes(Sharp,l993)largeyduetothesuggestionthathighteIneratU-rcatalyticoxidationanalysisyieklshighervaluesthanhaditionalweoxidationmethods(SugdriraandSuzuki,l988).Thereportedhigherconcenttationsappeatalsignilicantforg1obaloasnfluxmodelingcyoggweiler,l992)andforunderst…  相似文献   

2.
INTRODUCTIONEstuariescompriseamajorbiogeochemicalinterfaceconnectingthelandandthesea (Man toura,1 987) .Thebehaviorandfateofaparticularriver bornesubstanceintroducedintoanestuaryisdeterminedtoalargeextentbythebiogeochemicalpropertiesofthesubstanceaswellasp…  相似文献   

3.
Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.The total organic carbon storage(OCS) of the peatlands in China,including bare peatlands and buried peatlands,are 1.503 × 109 t,unevenly distributed over 30 provincial level administrative units and 16 climatic zones.Peatland organic carbon storage(POCS) in Sichuan(6.45 × 108 t) and Yunnan provinces(2.91 × 108 t) is the highest,accounting for 62.29% of the total POCS.Humid zone of plateau has the highest POCS of 7.14 × 108 t,especially in the Zoigê Plateau,where the POCS is 6.30 × 108 t,accounting for 41.92% of the total POCS of China.The organic carbon density(OCD) of the peatlands in China mostly ranges from 80 kg/m3 to 140 kg/m3,and the range of the maximum is 270-360 kg/m3,and the minimum is less than 80 kg/m3.Divided by the Yanshan Mountain,Taihang Mountains and Hengduan Mountains,the peatland oganic carbon density(POCD) is lower on the northwestern side than that on the southeastern side.Jiangxi Province has the highest POCD due to the ancient buried peatlands.The OCD of the bare peatlands is mostly in the range of 60-150 kg/m3,and that of the buried peatlands is more than 100 kg/m3.In the bare peatlands,the OCD generally increases from the surface layer to the below surface layer,and then decreases with the depth.Although the peatlands area in China is small,the OCS per unit area is far higher than the other soil types,so peatlands protection can effectively mitigate climate change.  相似文献   

4.
Concentrations of dissolved and particulate organic carbon (DOC and POC) were documented in 1996–1997 at 4 different trophic state stations in Donghu Lake, a typical shallow eutrophic lake along the Changjiang River's middle reaches. The mean concentrations of DOC were 15.11±3.26, 15.19±4.24, 14.27±3.43, and 13.31±3.30 mg/L in Station I, II, III, and IV, respectively. The DOC concentrations of the studied area were very similar to that in other lakes along the Changjiang River's middle reaches. The POC mean of the whole lake was 5.01 mg/L due to the large amount of organic detritus of both allochthonous and autochthonous origin. Significant linear relationship was found between POC and chlorophyll a at all 4 stations, which presumably reflect that phytoplankton, its exudates and its metabolic products were the main contributors to the POC pool in the water column. The slope of such linear relationship at Station IV was significantly steeper than that at Station I, II and III. In addition, the DOC/POC ratios (mean value: 4.40) indicated that the organic detritus was the most important component of the particulate organic matter; in other works, next to organic detritus, phytoplankton dominated the particulate organic matter in Donghu Lake. Project 39770146, 39430101 supported by NSFC and the State Key Laboratory of Freshwater Ecology and Biotechnology, affiliated to the Institute of Hydrobiology, Chinese Academy of Sciences.  相似文献   

5.
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.  相似文献   

6.
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O2-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.5 Ig/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.  相似文献   

7.
This study was conducted to determine the changes in the soil carbon stocks as influenced by land use in a humid zone of Deylaman district(10,876 ha), a mountainous region of northern Iran. For this, land use maps were produced from TM and ETM+ images for 1985, 2000 and 2010 years; and this was supplemented by field measurement of soil carbon in 2010. The results showed that the mean soil organic carbon(SOC) density was 6.7±1.8 kg C m-2, 5.2±3.4 kg C m-2 and 3.2±1.8 kg C m-2 for 0-20 cm soil layer and 4.8±1.9 kg C m-2, 3.1±2 kg C m-2 and 2.7±1.8 kg C m-2 for 20-40 cm soil layer in forest, rangeland and cultivated land, respectively. During the past 25 years, 14.4% of the forest area had been converted to rangeland; and 28.4% of rangelands had been converted to cultivated land. According to the historical land use changes in the study area, the highest loss of SOC stocks resulted from the conversion of the forest to rangeland(0.45×104 Mg C in 0-40 cm depth layer); and the conversion of rangeland to cultivated land(0.37×104 Mg C in 0-40 cm), which typically led to the loss of soil carbon in the area studied. The knowledge on the historical land use changes and its influence on overall SOC stocks could be helpful for making management decision for farmers and policy managers in the future, for enhancing the potential of C sequestration in northern Iran.  相似文献   

8.
Water samples were collected and analyzed in high water season (July 1997) and in middle water season (October, 1997) from two main lower reach gauge stations of the Zhujiang (Pearl) River, namely Hekou and Makou, respectively. Content of particulate organic carbon is always higher than that of dissolved organic carbon in both seasons, which is obviously different from the global average pattern, i.e. dissolved organic carbon is the dominant component of the transported riverine organic carbon. The content of dissolved and particulate organic carbon changes with the water levels in a direct ratio. The percentage of organic carbon in total suspended substance changes with the content of total suspended substance in an inverse ratio. The more intense is the soil erosion in the drainage, the more concentrated is the riverine organic carbon in the river. The contribution of autochthonous organic carbon is large in high water season than in middle water season. Fundation item: This project was supported financially by the National Natural Science Foundation of China (No. 49901002), the key funds of resources and eco-environmental research of the CAS (No. KZ952-J1-402), a funds of the state key laboratory of organic geochemistry, and Guangdong Province Science Funds (No. 984131). Biography: Gao Quan-zhou (1965 —), male, a native of Anhui Province, associate professor. His research interests are geomorphology and Quaternary geochemistry.  相似文献   

9.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

10.
In this study, we investigated the distributions of sea-surface suspended particulate organic carbon (POC) and its stable isotope (δ13C POC) in Prydz Bay, Antarctica, and examined the factors influencing their distribution, sources, and transport. We used measurements collected from 61 stations in Prydz Bay during the 29th Chinese National Antarctic Research Expedition, in combination with remote sensing data on sea surface temperature (SST), chlorophyll a concentration, and sea ice coverage. The POC concentration in the surface waters of Prydz Bay was 0.28-0.84 mg.L-1, with an average concentration of 0.48 mg.L-1. The δ13C POC value ranged from -29.68‰ to -26.30‰, with an average of-28.01‰. The concentration of suspended POC was highest in near-shore areas and in western Prydz Bay. The POC concentration was correlated with chlorophyll a concentration and sea ice coverage, suggesting that POC was associated with phytoplankton production in local water columns, while the growth of phytoplankton was obviously affected by sea ice coverage. The δ13C poc value in suspended particles decreased gradually towards the outer waters of Prydz Bay, while in eastern Prydz Bay the δ13Cpoc value become gradually more negative from nearshore to deep-water areas, suggesting that δ13C poc was mainly influenced by CO2 fixation by phytoplankton. The δ13C POC value in suspended particles near Zhongshan Station was significantly negative, possibly as a result of the input of terrigenous organic matter and changes in the phytoplankton species composition in the nearshore area.  相似文献   

11.
A whole year analysis of riverine dissolved organic carbon (DOC) concentrations in the Xijiang River (XJR), South China, showed that the mean riverine DOC concentration (1.24 mg L-1) in the XJR was notably lower than the averaged value (5.75 mg L-1) of the global riverine DOC concentration in several major rivers. There is an inconspicuous monthly fluctuation of the DOC signal in the XJR, but on a semi-yearly time scale, however, the riverine DOC concentration had significant difference between hydrological...  相似文献   

12.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

13.
The effects of using different types of glass fiber filters (GF/F, GF/C) and of sample treatments were evaluated. Studies on the variation of suspended matter (SM) and particulate organic carbon (POC) showed that: 1) the transversal and day to night variations are important and must be taken into account in order to get a correct river flux; 2) no regular seasonal variations of SM and POC were observed, as they are controlled essentially by the climatological, hydrologic, physiochemical, biological, and geological conditions of the drainage area. Contribution No 2246 from the Institute of Oceanology, Chinese Academy of Sciences.  相似文献   

14.
A one-year field study was conducted to determine the conversion ratio of phytoplankton biomass carbon (Phyto-C) to chlorophyll-a (Chl-a) in Jiaozhou Bay, China. We measured suspended particulate organic carbon (POC) and phytoplankton Chl-a samples collected in surface water monthly from March 2005 to February 2006. The temporal and spatial variations of Chl-a and POC concentrations were observed in the bay. Based on the field measurements, a linear regression model II was used to generate the conversion ratio of Phyto-C to Chl-a. In most cases, a good linear correlation was found between the observed POC and Chl-a concentrations, and the calculated conversion ratios ranged from 26 to 250 with a mean value of 56 μg μg−1. The conversion ratio in the fall was higher than that in the winter and spring months, and had the lowest values in the summer. The ratios also exhibited spatial variations, generally with low values in the near shore regions and relatively high values in offshore waters. Our study suggests that temperature was likely to be the main factor influencing the observed seasonal variations of conversion ratios while nutrient supply and light penetration played important roles in controlling the spatial variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号