首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific   总被引:4,自引:0,他引:4  
Evaluation of competing El Niño/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (4°N-4°S), using 1950–1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In time-longitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the devil's staircase interaction mechanism between the annual cycle and ENSO.  相似文献   

2.
Summary In order to improve our understanding of the interannual variability of the 30–50 day oscillations of the northern summer monsoon, we have performed numerical experiments using a 5-level global spectral model (GSM). By intercomparing the GSM simulations of a control summer experiment (E1) and a warm ENSO experiment (E2) we have examined the sensitivity of the low frequency intraseasonal monsoonal modes to changes in the planetary scale component of the monsoon induced by anomalous heating in the equatorial eastern Pacific during a warm ENSO phase.It is found that the anomalous heating in the equatorial eastern Pacific induces circulation changes which correspond to weakening of the time-mean divergent planetary scale circulation in the equatorial western Pacific, weakening of the east-west Walker cell over the western Pacific ocean, weakening of the time-mean Reverse Hadley circulation (RHC) over the summer monsoon region and strengthening of the time-mean divergent circulation and the subtropical jet stream over the eastern Pacific and Atlantic oceans. These changes in the large scale basic flow induced by the anomalous heat source are found to significantly affect the propagation characteristics of the 30–50 day oscillations. It is noticed that the reduction (increase) in the intensity of the time-mean divergent circulation in the equatorial western (eastern) Pacific sectors produces weaker (stronger) low-level convergence as a result of which the amplitude of the eastward propagating 30–50 day divergent wave decreases (increases) in the western (eastern) Pacific sectors in E2. One of the striking aspects is that the eastward propagating equatorial wave arrives over the Indian longitudes more regularly in the warm ENSO experiment (E2). The GSM simulations reveal several small scale east-west cells in the longitudinal belt between 0–130°E in the E1 experiment. On the other hand the intraseasonal oscillations in E2 show fewer east-west cells having longer zonal scales. The stronger suppression of small scale east-west cells in E2 probably accounts for the greater regularity of the 30–50 day oscillations over the Indian longitudes in this case.The interaction between the monsoon RHC and the equatorial 30–50 day waves leads to excitation of northward propagating modes over the Indian subcontinent in both cases. It is found that the zonal wind perturbations migrate northward at a rate of about 0.8° latitude per day in E1 while they have a slightly faster propagation speed of about 1° latitude per day in E2. The low frequency monsoonal modes have smaller amplitude but possess greater regularity in E2 relative to E1. As the wavelet trains of low latitude anomalies progress northward it is found that the giant meridional monsoonal circulation (RHC) undergoes well-defined intraseasonal oscillations. The amplitude of the monsoon RHC oscillations are significantly weaker in E2 as compared to E1. But what is more important is that the RHC is found to oscillate rapidly with a period of 40 days in E1 while it executes slower oscillations of 55 days period in E2. These results support the observational findings of Yasunari (1980) who showed that the cloudiness fluctuations on the 30–60 day time scale over the Indian summer monsoon region are associated with longer periods during El Nino years. The oscillations of the monsoon RHC show an enhancement of the larger scale meridional cells and also a stronger suppression of the smaller scale cells in E2 relative to E1 which seems to account for the slower fluctuations of the monsoon RHC in the warm ENSO experiment. It is also proposed that the periodic arrival of the eastward propagating equatorial wave over the Indian longitudes followed by a stronger inhibition of the smaller meridional scales happen to be the two primary mechanisms that favour steady and regular northward propagation of intraseasonal transients over the Indian subcontinent in the warm ENSO experiment (E2). This study clearly demonstrates that the presence of E1 Nino related summertime SST anomalies and associated convection anomalies in the tropical central and eastern Pacific are favourable criteria for the detection and prediction of low frequency monsoonal modes over India.With 11 Figures  相似文献   

3.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

4.
Summary ?The fields of sea-level height anomaly (SLHA) and surface zonal wind anomaly (SZWA) have been analyzed to investigate the typical evolution of spatial patterns during El Ni?o-Southern Oscillation (ENSO) events. Sea surface temperature (SST) changes during ENSO events are represented as an irregular interplay of two dominant modes, low-frequency mode and biennial mode. Cyclostationary principal component (PC) time series of the former variables are regressed onto the PC time series of the two dominant SSTA modes to find the spatial patterns of SLHA and SZWA consistent with the two SSTA modes. The two regressed patterns of SLHA explain a large portion of SLHA total variability. The reconstruction of SLHA using only the two components reasonably depicts major ENSO events. Although the low-frequency component of SST variability is much larger than the biennial component, the former does not induce strong Kelvin and Rossby waves. The biennial mode induces much stronger dynamical ocean response than the low-frequency mode. Further decomposition of the SLHA modes into Kelvin and Rossby components shows how these two types of equatorial waves evolve during typical ENSO events. The propagation and reflection of these waves are clearly portrayed in the regressed patterns leading to a better understanding of the wave mechanism in the tropical Pacific associated with ENSO. A close examination suggests that the delayed action oscillator hypothesis is generally consistent with the analysis results reported here. Rossby wave development in the central Pacific in the initiation stage of ENSO and the subsequent reflection of Kelvin waves at the western boundary seems to be an important mechanism for further development of ENSO. The development of Kelvin waves forced by the surface wind in the far-western Pacific cannot be ruled out as a possible mechanism for the growth of ENSO. While Kelvin waves in the far-western Pacific serve as an intiation mechanism of ENSO, they also cause the termination of existing ENSO condition in the central and eastern Pacific, thereby leading to a biennial oscillation over the tropical Pacific. The Kelvin waves from the western Pacific erode the thermocline structure in the central Pacific preventing further devlopment of ENSO and ultimately terminating it. It should be emphasized that this wave mechanism is clear and active only in the biennial mode. Received August 15, 2001; revised March 6, 2002  相似文献   

5.
Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.  相似文献   

6.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

7.
This work documents the diversity in Coupled Model Inter-comparison Project Phase 5 (CMIP5) models in simulating different aspects of sea surface temperature (SST) variability, particularly those associated with the El Niño–Southern Oscillation (ENSO), as well as the impact of low-frequency variations on the ENSO variability and its global teleconnection. The historical simulations (1870–2005) include 10 models with ensemble member ranging from 3 to 10 that are forced with observed atmospheric composition changes reflecting both natural and anthropogenic forcings. It is shown that the majority of the CMIP5 models capture the relative large SST anomaly variance in the tropical central and eastern Pacific, as well as in North Pacific and North Atlantic. The frequency of ENSO is not well captured by almost all models, particularly for the period of 5–6 years. The low-frequency variations in SST caused by external forcings affect the SST variability and also modify the global teleconnection of ENSO. The models reproduce the global averaged SST low-frequency variations, particularly since 1970s. However, majority of the models are unable to correctly simulate the spatial pattern of the observed SST trends. These results suggest that it is still a challenge to reproduce the features of global historical SST variations with the state-of-the-art coupled general circulation model.  相似文献   

8.
The present study aims at studying the role played by high-frequency wind variability, wave reflection and easterly wind anomalies in the western Pacific in the onset, growth and termination phases of the 1997–1998 El Niño using the Trident intermediate coupled model and observations. While the anomalous strength of the trade winds in 1996 favored the initiation of a warm event in 1997 (via western Pacific boundary Rossby wave reflection), the actual timing of the onset and the amplitude of the event resulted from the large March 1997 wind event. Once initiated, high-frequency westerly winds strongly contributed to the rapid growth of the warm event and to the displacement of the eastern edge of the warm-pool. Moreover, both easterly and westerly high-frequency wind variability in 1997–1998 contributed to the amplitude of the event, set the evolution of the warm event and potentially influenced the equatorial Pacific conditions at least one year after the El Niño event. In addition, eastern boundary reflection also significantly contributed to the amplitude and duration of the warm event, whereas its termination was a combination of various factors: reflection of upwelling Rossby waves at the western boundary and large easterly wind anomalies observed in the western Pacific from November 1997 to early 1998. These factors were sufficient to terminate the event and to switch temperature anomalies from warm to cold. To conclude, understanding the coupling between the high- and low-frequency wind variability, i.e., studying ENSO as a multi-scale phenomenon, will certainly lead to a better comprehension of the diversity of its behavior and potentially to an improvement of its predictability.  相似文献   

9.
10.
 Analysis of data from seventeen rainfall stations in the Iberian Peninsula, Balearic Islands and Northern Africa has revealed significant El Ni?o-Southern Oscillation (ENSO) signals in Europe. Both North Atlantic Oscillation (NAO) and Southern Oscillation (SO) exert an influence on Iberian climate, but at different temporal and spatial scales. Though most of the peninsula is under NAO influence in winter, some stations in the eastern region show no connection with this phenomenon. The same is found for ENSO, with a positively correlated region appearing in the eastern part of Spain, while the rest of the peninsula remains insensitive. The correlation between ENSO and Iberian rainfall has increased towards the end of the present century, with strong positive signals spanning over half of the area studied. The percentage of springtime variability due to ENSO has similarly increased, reaching up to 50% in certain areas. We also show how there are outstanding climatic sensors of these phenomena such as Lake Gallocanta, which manifests a positive response to ENSO while appears insensitive to NAO. Common long-term patterns are observed between SOI and an inferred lake level series, suggesting a constant influence of the low-frequency component of ENSO throughout the period considered. Lake drying phases every 14 years reflect the impact of this signal, approximately every four ENSO events. Received: 6 June 1996/Accepted: 30 October 1996  相似文献   

11.
Low-frequency time-space regimes in tropical convection   总被引:2,自引:0,他引:2  
Summary The multi-scale time-space regimes of the low-frequency convective activity over the maritime continent and tropical western Pacific are investigated using the monthly infrared radiance black body temperature (IRTBB) over a latitude band of 5S–9S, 80E–160W for the time period of 1980–1993. The complex Morlet wavelet transform and the complex empirical orthogonal function (CEOF) analysis are used. The zonal mean of the monthly IRTBB is dominated by the annual cycle which is influenced by a monsoon regime. An interannual signal around the time scale of 4.8-year and a decadal signal are obvious. In the zonal deviation, each CEOF represents a particular spatial regime; its corresponding principal component exhibits different multi-scale temporal behavior. The first leading component represents the variability due to large scale land-ocean distribution (the maritime continent, the Indian Ocean and the western Pacific) related to monsoon, with a dominant annual time scale. The second leading component represents the fluctuation of Walker circulation, associated with the El Niño-Southern Oscillation (ENSO) events having a main time scale around 4.8-year and the quasi-biennial oscillation (QBO) around 2.4-year. The third leading component represents the variability due to small-scale land-ocean distribution (Java, New Guinea and the surrounding seas), with a dominant annual time scale. The main time scales in all the components seem to be modulated by longer time scales in either amplitude or frequency or both.Different time scales, as well as their in-phase interference, may play different roles in developing an individual ENSO event. The 1982/1983 event is dominated by an enhanced QBO. The 1986/1987 event is dominated by an enhanced 4.8-year oscillation. The 1991 and 1993 events may have resulted from an in-phase interference among several interannual time scales, abnormal annual cycles, and also highfrequency variability.SAIC/General Sciences Corporation.With 6 Figures  相似文献   

12.
Coupled variability and air-sea interaction in the South Atlantic Ocean   总被引:2,自引:1,他引:2  
A total of 52 years of data (1949–2000) from the NCEP/NCAR reanalysis are used to investigate mechanisms involved in forcing and damping of sea surface temperature (SST) variability in the South Atlantic Ocean. Organized patterns of coupled ocean–atmosphere variability are identified using EOF and SVD analyses. The leading mode of coupled variability consists of an SST pattern with a strong northeast–southwest gradient and an SLP monopole centered at 15°W, 45°S. The anomalous winds associated with this monopole generate the SST pattern through anomalous latent heat flux and mixed layer deepening. Other heat flux components and anomalous Ekman transport play only a secondary role. Once established, the SST pattern is attenuated through latent heat flux. The higher SST modes are also induced by anomalous winds and destroyed by latent heat flux. It thus appears that the coupled variability in the South Atlantic Ocean consists of atmospheric circulation anomalies that induce SST anomalies through anomalous latent heat fluxes and wind-induced mixed layer deepening. These SST anomalies are destroyed by latent heat flux with no detectable systematic feedback onto the atmospheric circulation. Atmospheric variability in the South Atlantic is found to be largely independent of that elsewhere, although there is a weak relation with ENSO (El Niño-Southern Oscillation).  相似文献   

13.
Summary Daily 200-hPa relative vorticity data have been used to study the dominant patterns related to the cyclonic vortices over the South Atlantic Ocean in the vicinities of northeast Brazil, during the 1980–1989 period. Reference modes were obtained through empirical orthogonal function (EOF) analysis of the 200-hPa filtered vorticity anomalies over northeast Brazil, considering all the southern hemisphere (SH) summers within the study period. The amplitude time series of the first reference mode, separately for each SH summer, was correlated with the corresponding filtered vorticity anomalies in a larger area extending from 20°N to 40°S and between 120°W and 20°W. The correlation patterns feature a wave-like structure along eastern South America, with three main centers: the first one, over the South Atlantic off the northeast Brazil coast, is associated with the cyclonic vortices; the second one, over eastern Brazil, represents the corresponding anomalously amplified ridges; and the third one, over southern Brazil/Uruguay, is related to the equatorward incursions of midlatitude upper level troughs. This wave-like pattern is consistent with the vortex formation mechanism suggested in previous works. Another wave-like pattern southwest-northeast oriented is evident over the tropical southeastern Pacific, for some years. The internannual variability of these patterns is discussed in this paper.With 9 Figures  相似文献   

14.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

15.
Summary The El Ni?o-Southern Oscillation (ENSO) climate cycle is the basis for this paper, aimed at providing a diagnostic outlook on seasonal sea-level variability (i.e. anomalies with respect to the Climatology) for the U.S.-Affiliated Pacific Islands (USAPI). Results revealed that the sea-level variations in the northwestern tropical Pacific islands (e.g. Guam and Marshall Islands) have been found to be sensitive to ENSO-cycle, with low sea-level during El Ni?o and high sea-level during La Ni?a events. The annual cycle (first harmonic) of sea-level variability in these north Pacific islands has also been found to be very strong. The composites of SST and circulation diagnostic show that strong El Ni?o years feature stronger surface westerly winds in the equatorial western/central Pacific, which causes north Pacific islands to experience lower sea-level from July to December, while the sea-level in south Pacific islands (e.g. American Samoa) remains unchanged. As the season advances, the band of westerly winds propagates towards the south central tropical Pacific and moves eastward, which causes American Samoa to experience a lower sea-level from January to June, but with six months time lag as compared to Guam and the Marshalls. U.S.-Affiliated Pacific Islands are among the most vulnerable communities to climate variability and change. This study has identified the year-to-year ENSO climate cycle to have significant impact on the sea-level variability of these islands. Therefore, regular monitoring of the ENSO climate cycle features that affect seasonal sea-level variability would provide substantial opportunities to develop advance planning and decision options regarding hazard management in these islands.  相似文献   

16.
Summary By using a coupled ocean-atmosphere model with an oceanic surface boundary layer, including linear atmospheric and oceanic dynamics and linearized SST prognostic equation with respect to spatially varying climatological background states, we have investigated the eigenvalue problem of the linearized coupled system in the tropical Pacific, including the characteristic periods, horizontal structures, temporal-spatial evolution and instability of the unstable interannual oscillation characteristic modes and their associations with ENSO. The main results show that the quasi-biennial (QB) oscillation was found to act as the most unstable mode in the tropical Pacific coupled air-sea system. Only the most unstable QB mode displays the ENSO-like structure and temporalspatial evolution, and its existence seems likely to have no essential dependence on the climatological annual cycle (AC). Unfortunately, from the linearized coupled system we have not derived a most unstable mode relevant to the observed principle mode with the preferred 3–4 year lower-frequency (LF) oscillation period in the real world ENSO variability. Therefore, we infer that the LF mode would likely result from certain nonlinear interaction, in which the QB mode that acts as the shortest ENSO cycle could be fundamentally important. Also, we believe that the results in present work could be helpful to fully understand the multiple time scales and the associated mechanism responsible for the real world ENSO variability.With 7 Figures  相似文献   

17.
Summary Composite time series combining the results of total ozone measurements taken at Dobson stations located within the latitude band 30°N–60°N, in Europe, and North America, have been examined in order to detect any trends. Various regression trend models were used to identify any trend variations over the regions during the period 1970–1990. The results of fitting the models to the data imply that the model which assumes a linear trend provides precise information about the long-term ozone trends (trends during the period 1970–1990). The study identifies short-term summer trends in the 1980s that are evidently more strongly negative than trends that occur in the 1970s (the differences are statistically significant at the 2 level). The year-round loss (in all analyzed regions) and the winter loss in total ozone (the belt 30°N–60°N) N. America, during the 1980s are about 2–3 times higher than the losses during the 1970s (the differences are statistically significant at the 1 level).With 1 Figure  相似文献   

18.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

19.
B. Wang  Z. Fang 《Climate Dynamics》2000,16(9):677-691
 We describe a coupled tropical ocean-atmosphere model that represents a new class of models that fill the gap between anomaly coupled models and fully coupled general circulation models. Both the atmosphere and ocean are described by two and half layer primitive equation models, which emphasize the physical processes in the oceanic mixed layer and atmospheric boundary layer. Ocean and atmosphere are coupled through both momentum and heat flux exchanges without explicit flux correction. The coupled model, driven by solar radiation, reproduces a realistic annual cycle and El Nino-Southern Oscillation (ENSO). In the presence of annual mean shortwave radiation forcing, the model exhibits an intrinsic mode of ENSO. The oscillation period depends on the mean forcing that determines the coupled mean state. A perpetual April (October) mean forcing prolongs (shortens) the oscillation period through weakening (enhancing) the mean upwelling and mean vertical temperature gradients. The annual cycle of the solar forcing is shown to have fundamental impacts on the behavior of ENSO cycles through establishing a coupled annual cycle that interacts with the ENSO mode. Due to the annual cycle solar forcing, the single spectral peak of the intrinsic ENSO mode becomes a double peak with a quasi-biennial and a low-frequency (4–5 years) component; the evolution of ENSO becomes phase-locked to the annual cycle; and the amplitude and frequency of ENSO become variable on an interdecadal time scale due to interactions of the mean state and the two ENSO components. The western Pacific monsoon (the annual shortwave radiation forcing in the western Pacific) is primarily responsible for the generation of the two ENSO components. The annual march of the eastern Pacific ITCZ tends to lock ENSO phases to the annual cycle. The model's deficiencies, limitations, and future work are also discussed. Received: 15 June 1999 / Accepted: 11 December 1999  相似文献   

20.
Components of interannual, intermonthly, and total monthly variability of lower troposphere temperature are calculated from a global coupled ocean-atmosphere general circulation model (GCM) (referred to as the coupled model), from the same atmospheric model coupled to a nondynamic mixedlayer ocean (referred to as the mixed-layer model), and from microwave sounding unit (MSU) satellite data. The coupled model produces most features of intermonthly and interannual variability compared to the MSU data, but with somewhat reduced amplitude in the extratropics and increased variability in the tropical western Pacific and tropical Atlantic. The relatively short 14-year period of record of the MSU data precludes definitive conclusions about variability in the observed system at longer time scales (e.g., decadal or longer). Different 14-year periods from the coupled model show variability on those longer time scales that were noted in Part 1 of this series. The relative contributions of intermonthly and interannual variability that make up the total monthly variability are similar between the coupled model and the MSU data, suggesting that similar mechanisms are at work in both the model and observed system. These include El Niño-Southern Oscillation (ENSO)-type interannual variability in the tropics, Madden-Julian Oscillation (MJO) type intermonthly variability in the tropics, and blocking-type intermonthly variability in the extratropics. Manifestations of all of these features have been noted in various versions of the model. Significant changes of variability noted in the coupled model with doubled carbon dioxide differ from those in our mixed-layer model and earlier studies with mixed-layer models. In particular, in our mixed-layer model intermonthly and interannual variability changes are similar with a mixture of regional increases and decreases, but with mainly decreases in the zonal mean from about 20°S to 60°N and near 60°S. In the coupled model, intermonthly and interannual changes of variability with doubled CO2 show mostly increases of tropical interannual variability and decreases of intermonthly variability near 60°N. These changes in the tropics are related to changes in ENSO, the south Asian monsoon, and other regional hydrological regimes, while the alterations near 60°N are likely associated with changes in blocking activity. These results point to the important contribution from ENSO seen in the coupled model and the MSU data that are not present in the mixed-layer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号