首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
Abstract The majority of the carbonaceous chondrite clasts found in howardites, eucrites and diogenites are CM2 material, a lesser proportion is CR2 material, and other rare types are present. A single clast that was found on the Moon and called the Bench Crater meteorite is apparently shocked CM1 material. The CM2 clasts are matrix supported mixtures of olivine-pyroxene-phyllosilicate-sulfide bearing aggregates, loose olivines and pyroxenes, sulfides, carbonates, and sinuous spinel-phyllosilicate-diopside calcium-aluminum-rich inclusions (CAIs). Magnetite and metal are rare. Some aggregates have fine-grained rims of material resembling matrix. The opaque, fine-grained matrix consists predominantly of serpentine of extremely variable composition and sulfides; tochilinite is occasionally present. The trace element data for one Jodzie clast from this study and the average of similar clasts from Kapoeta support a CM classification; volatiles are depleted relative to CI and enriched relative to CR material. The CR2 clasts are found (in small numbers) in only four howardites: Bholghati, Jodzie, Kapoeta and Y793497. Petrographically, they are matrix-supported mixtures of olivine aggregates (sometimes containing sulfides), loose olivines, pyrrhotite, pentlandite, low-Ca pyroxene (minor), hedenbergite (rare), kamacite (rare and only found within olivine), Ca-carbonates and abundant magnetite framboids and plaquets. Phyllosilicates are fine-grained and largely confined to matrix; they are mixtures of serpentine and saponite. The matrix of CR2 clasts also contains pyrrhotite, pentlandite, chromite and a significant fraction of poorly-crystalline material with the same bulk composition as matrix phyllosilicate. There is evidence of heating in a substantial number of clasts, both CM2 and CR2, including: (1) corrugated serpentine flakes, (2) pseudomorphs of anhydrous ferromagnesian material after flaky phyllosilicates, and (3) hedenbergite rims on calcite. While the timing of the hedenbergite rims is debatable, the destruction of phyllosilicates clearly occurred at a late stage, plausibly during impact onto the HED asteroid(s) and Moon, and required peak heating temperatures on the order of 400 °C. We note that in general, CM2 material was the most common carbonaceous chondrite lithology impacting the HED asteroids (with howardites and eucrites taken together), as it is for the Earth today. A total of 61 out of 75 carbonaceous chondrite clasts from HED meteorites belong to the CM clan, petrologic grade 2. This is also supported by published siderophile and volatile element data on howardites, eucrites and diogenites that are taken to indicate that CM-like materials were the most common impactors on the HED asteroid(s). The ratio of CR/CM clasts in HED asteroids is essentially the same as for modern falls at Earth. This may indicate that the ratio of disaggregated CM2 to CR2 asteroidal material has been approximately constant through the history of the solar system. Finally, our results are also compatible with type-2 carbonaceous chondrites being equivalent to or from the same source as the material that originally accreted to form the HED asteroid.  相似文献   

2.
Northwest Africa (NWA) 5232, an 18.5 kg polymict eucrite, comprises eucritic and exogenic CM carbonaceous chondrite clasts within a clastic matrix. Basaltic clasts are the most abundant eucritic clast type and show a range of textures and grain size, from subophitic to granoblastic. Other eucritic clast types present include cumulate (high‐En pyroxene), pyroxene‐lath, olivine rich with symplectite intergrowths as a break‐down product of a quickly cooled Fe‐rich metastable pyroxferroite, and breccia (fragments of a previously consolidated breccia) clasts. A variable cooling rate and degree of thermal metamorphism, followed by a complex brecciation history, can be inferred for the clasts based on clast rounding, crystallization (and recrystallization) textures, pyroxene major and minor element compositions, and pyroxene exsolution. The range in δ18O of clasts and matrix of NWA 5232 reflects its origin as a breccia of mixed clasts dominated by eucritic lithologies. The oxygen isotopic compositions of the carbonaceous chondrite clasts identify them as belonging to CM group and indicate that these clasts experienced a low degree of aqueous alteration while part of their parent body. The complex evolutionary history of NWA 5232 implies that large‐scale impact excavation and mixing was an active process on the surface of the HED parent body, likely 4 Vesta.  相似文献   

3.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

4.
Abstract– On April 9, 2009, at 3:00 CEST, a very bright fireball appeared over Carinthia and the Karavanke Mountains. The meteoroid entered the atmosphere at a very steep angle and disintegrated into a large number of objects. Two main objects were seen as separate fireballs up to an altitude of approximately 5 km, and witnesses reported loud explosions. Three stones were found with a total weight of approximately 3.611 kg. The measured activity of short‐lived cosmogenic radionuclides clearly indicates that two specimens result from a very recent meteorite fall. All cosmogenic radionuclide concentrations suggest a rather small preatmospheric radius of <20 cm; a nominal cosmic‐ray exposure age based on 21Ne is approximately 4 Ma, but the noble gas and radionuclide results in combination indicate a complex irradiation. Jesenice is a highly recrystallized rock with only a few relic chondrules visible in hand specimen and thin section. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivines and pyroxenes clearly indicate that Jesenice is a L6 chondrite. The bulk composition of Jesenice is very close to the published average element concentration for L ordinary chondrites. The chondrite is weakly shocked (S3) as indicated by the undulatory extinction in olivine and plagioclase and the presence of planar fractures in olivine. Being weakly shocked and with gas retention ages of >1.7 Ga (4He) and approximately 4.3 Ga (40Ar), Jesenice seems not to have been strongly affected by the catastrophic disruption of the L‐chondrite parent body approximately 500 Ma ago.  相似文献   

5.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

6.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

7.
Abstract— Isotopic ages of meteorites that indicate chronometer resetting due to impact heating are summarized. Most of the ages were obtained by the 39Ar-40Ar technique, but several Rb-Sr, Pb-Pb, and Sm-Nd ages also suggest some degree of impact resetting. Considerations of experimental data on element diffusion in silicates suggest that various isotopic chronometers ought to differ in their ease of resetting during shock heating in the order K-Ar (easiest), Rb-Sr, Pb-Pb, and Sm-Nd, which is approximately the order observed in meteorites. Partial rather than total chronometer resetting by impacts appears to be the norm; consequently, interpretation of the event age is not always straightforward. Essentially all 39Ar-40Ar ages of eucrites and howardites indicate partial to total resetting in the relatively narrow time interval of 3.4–4.1 Ga ago (1 Ga = 109 years). Several disturbed Rb-Sr ages appear consistent with this age distribution. This grouping of ages and the brecciated nature of many eucrites and all howardites argues for a large-scale impact bombardment of the HED parent body during the same time period that the Moon received its cataclysmic bombardment. Other meteorite parent bodies such as those of mesosiderites, some chondrites, and IIE irons also may have experienced this bombardment. These data suggest that the early bombardment was not lunar specific but involved much of the inner Solar System, and may have been caused by breakup of a larger planetismal. Although a few chondrites show evidence of age resetting ~3.5–3.9 Ga ago, most impact ages of chondrites tend to fall below 1.3 Ga in age. A minimum of ~4 impact events, including events at 0.3, 0.5, 1.2, and possibly 0.9 Ga appear to be required to explain the younger ages of H, L, and LL chondrites, although additional events are possible. Most L chondrites show evidence of shock, and the majority of 39Ar-40Ar ages of L chondrites fall near 0.5 Ga. The L chondrite parent body apparently experienced a major impact at this time, which may have disrupted it. The observations (1) that lunar highland rocks experienced major impact resetting of various isotopic chronometers ~3.7–4.1 Ga ago; (2) that the HED parent body experienced widespread impact resetting of the K-Ar chronometer but only modest disturbance of other isotopic systems, during a similar time period; (3) that ordinary chondrite parent bodies show much more recent and less extensive impact resetting; and (4) that impacts, which initiated cosmic-ray exposure of most stone meteorites almost never reset isotopic chronometers, may all be a consequence of relative parent body size. Greater degrees of isotopic chronometer resetting occur in larger and warmer impact ejecta deposits that cool slowly. The relatively greater size of bodies like the Moon and Vesta (assumed to be the parent asteroid of HED meteorites) both permit such favorable ejecta deposits to occur more easily compared to smaller parent bodies (generally assumed for chondrites) and also protect parent objects from collisional disruption. Thus, impacts on larger bodies would tend to more easily reset chronometers, consistent with the observed relative ease of resetting of Moon (easiest), HED, chondrites and of K-Ar (easiest), Rb-Sr, other chronometers. In contrast, the more recent impact ages of chondrites are postulated to represent collisional disruption of smaller parent objects whose fragments are more readily removed from the meteorite source reservoirs. Impacts that initiate cosmic-ray exposure are mostly small in scale and produce little heating.  相似文献   

8.
Abstract– Eucrites, which are probably from 4 Vesta, and angrites are the two largest groups of basaltic meteorites from the asteroid belt. The parent body of the angrites is not known but it may have been comparable in size to Vesta as it retained basalts and had a core dynamo. Both bodies were melted early by 26Al and formed basalts a few Myr after they accreted. Despite these similarities, the impact histories of the angrites and eucrites are very different: angrites are very largely unshocked and none are breccias, whereas most eucrites are breccias and many are shocked. We attribute the lack of shocked and unbrecciated angrites to an impact, possibly at 4558 Myr ago—the radiometric age of the younger angrites—that extracted the angrites from their original parent body into smaller bodies. These bodies, which may have had a diameter of approximately 10 km, suffered much less impact damage than Vesta during the late heavy bombardment because small bodies retain shocked rocks less efficiently than large ones and because large bodies suffer near‐catastrophic impacts that deposit vastly more impact energy per kg of target. Our proposed history for the angrites is comparable to that proposed by Bogard and Garrison (2003) for the unbrecciated eucrites with Ar‐Ar ages of 4.48 Gyr and that for unbrecciated eucrites with anomalous oxygen isotopic compositions that did not come from Vesta. We infer that the original parent bodies of the angrites and the anomalous eucrites were lost from the belt when the giant planets migrated and the total mass of asteroids was severely depleted. Alternatively, their parent bodies may have formed in the terrestrial planet region and fragments of these bodies were scattered out to the primordial Main Belt as a consequence of terrestrial planet formation.  相似文献   

9.
Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44–36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50–70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre‐atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re‐evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5–0.6 Ma after formation of calcium‐aluminum‐rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti‐type chondrites were implanted by low‐velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth‐crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.  相似文献   

10.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

11.
We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012 ) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.  相似文献   

12.
Crystalline impact‐melt samples were created in high‐temperature environments by relatively large craters and, as such, give additional constraints on the nature of the impacts that created them. This article provides new 40Ar‐39Ar ages of impact‐melt clasts in howardites and shows that these clasts formed on the HED parent body, 4 Vesta, within the time period 3.3–3.8 Ga. Rather than resulting from an increased number of impacts, however, impact‐melted material in howardites may result from unusually high‐velocity impacts occurring in the asteroid belt during this period. This scenario is similar to the late heavy bombardment of the Moon, pointing to an unusual dynamical event at this time across the inner solar system. Therefore, impact‐melt rocks in howardites uniquely record a Vestan cataclysm.  相似文献   

13.
Abstract— Richfield is a moderately shocked (shock stage S4) LL3.7 genomict breccia find consisting mainly of light-colored recrystallized clasts and dark clasts exhibiting significant silicate darkening; a few impact-melt-rock clasts and LL5 chondrite clasts also occur. The cosmic-ray exposure age of 14.5 Ma is indistinguishable from the main exposure peak for LL chondrites (15 Ma). Although the exposure ages indicate little He loss, the gas-retention ages indicate high gas losses that must have occurred prior to or during ejection from the LL parent body.  相似文献   

14.
Saint‐Séverin and Elbert, two LL6 chondrite breccias, were systematically studied to evaluate multiple deformation effects on spatial scales ranging from thin section (mesoscale) to micron‐submicron (microscale) using optical microscopy, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The different techniques provide consistent results but have complementary strengths, together providing a powerful approach to unravel even complex impact histories. Both meteorites have an S4 conventional shock stage, but interclast areas are more deformed, and clasts are more deformed in Elbert than in Saint‐Séverin. TEM and EBSD data provide compelling evidence that Saint‐Séverin experienced significant shock deformation while already hot, and cooled rapidly afterward, as a result of a major, possibly disruptive impact on the LL chondrite parent body ~4.4 Ga ago. In contrast, Elbert was shocked from a cold initial state but was heated significantly during shock, and cooled in a localized hot impact deposit on the LL asteroid. Both meteorites probably were shocked at least twice; data for Saint‐Séverin are best reconciled with a three‐impact model.  相似文献   

15.
Our survey of type 4–6 ordinary chondrites indicates that gas-poor, melt-rock and/or exotic clast-bearing fragmental breccias constitute 5%, 22% and 23%, respectively, of H, L and LL chondrites. These abundances contrast with the percentages of solar-gas-rich regolith breccias among ordinary chondrites: H (14%), L (3%) and LL (8%) (Crabb and Schultz, 1981). Petrologic study of several melt-rock-clast-bearing fragmental breccias indicates that some acquired their clasts prior to breccia metamorphism and others acquired them after metamorphism of host material. In general, the melt-rock clasts in gas-poor H chondrite fragmental breccias were acquired after breccia metamorphism and were probably formed by impacts into boulders or exposed outcrops of H4-6 material in the H chondrite parent body regolith. In contrast, most of the melt-rock clasts in gas-poor L and LL fragmental breccias were acquired prior to breccia metamorphism. The low abundance of regolith breccias among L chondrites and evidence that at least two-thirds of the L chondrites suffered a major shock event 0.5 Gyr ago, suggest that the L parent body may have been disrupted by a major collision at that time and that the remaining parent body fragments were too small to develop substantial regoliths (e.g., Heymann, 1967; Crabb and Schultz, 1981). Such a disruption would have exposed a large amount of L chondrite bedrock, some of which would consist of fragmental breccias that acquired melt-rock clasts very early in solar system history, prior to metamorphism. The exposed bedrock would serve as a potential target for sporadic meteoroid impacts to produce a few fragmental breccias with unmetamorphosed melt-rock clasts. The high proportion of genomict brecciated LL chondrites reflects a complex collisional history, probably including several episodes of parent body disruption and gravitational reassembly. Differences in the abundances of different kinds of breccias among the ordinary chondrite groups are probably due to the stochastic nature of major asteroidal collisions.  相似文献   

16.
Abstract– A metamorphosed lithic clast was discovered in the CM chondrite Grove Mountains 021536, which was collected in the Antarctica by the Chinese Antarctic Research Exploration team. The lithic clast is composed mainly of Fe‐rich olivine (Fo62) with minor diopside (Fs9.7–11.1Wo48.3–51.6), plagioclase (An43–46.5), nepheline, merrillite, Al‐rich chromite (21.8 wt% Al2O3; 4.43 wt% TiO2), and pentlandite. Δ17O values of olivine in the lithic clast vary from ?3.9‰ to ?0.8‰. Mineral compositions and oxygen isotopic compositions of olivine suggest that the lithic clast has an exotic source different from the CM chondrite parent body. The clast could be derived from strong thermal metamorphism of pre‐existing chondrule that has experienced low‐temperature anhydrous alteration. The lithic clast is similar in mineral assemblage and chemistry to a few clasts observed in oxidized CV3 chondrites (Mokoia and Yamato‐86009) and might have been derived from the interior of the primitive CV asteroid. The apparent lack of hydration in the lithic clast indicates that the clast accreted into the CM chondrite after hydration of the CM components.  相似文献   

17.
Meteorites are impact-derived fragments from ≈ 85 parent bodies. For seven of these bodies, the meteorites record evidence suggesting that they may have been catastrophically fragmented. We identify three types of catastrophic events: (a) impact and reassembly events > 4.4 Gy ago, involving molten or very hot parent bodies(> 1200°C); this affected the parent bodies of the ureilites, Shallowater, and the mesosiderites. In each case, the fragments cooled rapidly (≈ 1–1000°C day−1) and then reassembled, (b) Later impacts involving cold bodies which, in some cases, reassembled; this occurred on the H and L ordinary chondrite parent bodies. The L parent body probably suffered another catastrophic event about 500 My ago. (c) Recent impacts of cold, multi-kilometer-sized bodies that generated meter-sized meteoroids; this occurred on the parent bodies of the IIIAB irons (650 My ago), the IVA irons (400 My ago), and the H ordinary chondrite (7 My ago).  相似文献   

18.
Abstract— We show that at the end of the main accretional period of the terrestrial planets, a few percent of the initial planetesimal population in the 1–2 AU zone is left on highly‐inclined orbits in the inner solar system. The final depletion of this leftover population would cause an extended bombardment of all of the terrestrial planets, slowly decaying with a timescale on the order of 60 Ma. Because of the large impact velocities dictated by the high inclinations, these projectiles would produce craters much larger than those formed by asteroids of equal size on typical current near‐Earth asteroid orbits: on the Moon, basins could have been formed by bodies as small as 20 km in diameter, and 10 km craters could be produced by 400 m impactors. To account for the observed lunar crater record, the initial population of highly‐inclined leftovers would need to be a few times that presently in the main asteroid belt, at all sizes, in agreement with the simulations of the primordial sculpting of both these populations. If a terminal lunar cataclysm (a spike in the crater record ~3.9 Ga ago) really occurred on the Moon, it was not caused by the highly‐inclined leftover population, because of the monotonic decay of the latter.  相似文献   

19.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

20.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号