首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

2.
The ~50 or 570 ka old Lonar crater, India, was excavated in the Deccan Trap flood basalt of Cretaceous age by the impact of a chondritic asteroid. The impact-spherules known from within the ejecta around this crater are of three types namely aerodynamically shaped sub-mm and mm size spherules, and a sub-mm sized variety of spherule, described as mantled lapilli, having a core consisting of ash-sized grains, shocked basalt and solidified melts surrounded by a rim of ash-sized materials. Although, information is now available on the bulk composition of the sub-mm sized spherules (Misra et al. in Meteorit Planet Sci 7:1001–1018, 2009), almost no idea exists on the latter two varieties. Here, we presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution. The mm-sized spherules are characterised by homogeneous glassy interior with vesicular margin in contrast to an overall smooth and glassy-texture of the sub-mm sized spherules. Undigested micro-xenocrysts of mainly plagioclase, magnetite and rare clinopyroxene of the target basalt are present only at the marginal parts of the mm-sized spherules. The minor relative enrichment of SiO2 (~3.5 wt% in average) and absence of schlieren structure in these spherules suggest relatively high viscosity of the parent melt droplets of these spherules in comparison to their sub-mm sized counterpart. Chemically homogeneous mm-sized spherule and impact-melt bomb share similar bulk chemical and trace element compositions and show no enrichment in impactor components. The general depletion of Na2O within all the Lonar impactites was resulted due to impact-induced volatilisation effect, and it indicates the solidification temperature of the Lonar impactites close to 1,100 °C. The systematic geochemical variation within the mm-sized spherules (Mg# ~0.38–0.43) could be attributed to various level of mixing between plagioclase-dominated impact melts and ultrafine pyroxene and/or titanomagnetite produced from the target basalt due to impact. Predominance of schlieren and impactor components (mainly Cr, Ni), and nearly absence of vesicles in the sub-mm sized spherules plausibly suggest that these quenched liquid droplets could have produced from the impactor-rich, hotter (~1,100 °C or more) central part of the plume, whereas the morpho-chemistry of the mm-sized spherules induces their formation from the relatively cool outer part of the same impact plume.  相似文献   

3.
Abstract– The Lonar crater in Maharashtra state, India, has been completely excavated on the Deccan Traps basalt (approximately 65 Ma) at approximately 570 ± 47 ka by an oblique impact of a possible chondritic asteroid that struck the preimpact target from the east at an angle of approximately 30–45o to the horizon where the total duration of the shock event was approximately 1 s. It is shown by our early work that the distribution of ejecta and deformation of target rocks around the crater rim are symmetrical to the east–west plane of impact ( Misra et al. 2010 ). The present study shows that some of the rock magnetic properties of these shocked target basalts, e.g., low‐field anisotropy of magnetic susceptibility (AMS), natural remanent magnetization (NRM)/bulk susceptibility (χ), and high‐coercivity and high‐temperature (HC_HT) magnetization component, are also almost symmetrically oriented with reference to the plane of impact. Studies on the relative displacements of K3 (minimum) AMS axes of shocked basalts from around the crater rim and from the adjacent target rocks to the approximately 2–3 km west of the crater center suggest that the impact stress could have branched out into the major southwestward and northwestward components in the downrange direction immediately after the impact. The biaxial distribution of AMS axes in stereographic plots for the unshocked basalts transforms mostly into triaxial distribution for the shocked basalts, although transitional type distribution also exists. The degree of anisotropy (P′) of AMS ellipsoids of the shocked basalts decreases by approximately 2% when compared with those of the unshocked target (approximately 1.03). The NRM/χ (Am?1) values of the shocked basalts on the rim of the Lonar crater do not show much change in the uprange or downrange direction on and close to the east–west plane of impact, and the values are only approximately 1.5 times higher on average over the unshocked basalts around the crater. However, the values become approximately 1.4–16.4 times higher for the shocked basalts on the crater rim, which occur obliquely to the plane of impact. The target basalts at approximately 2–3 km west of the crater center in the downrange also show a significant increase (up to approximately 26 times higher) in NRM/χ. The majority of the shocked basalt samples (approximately 73%) from around the crater rim, in general, show a lowering of REM, except those from approximately 2–3 km west of the crater center in the downrange, where nearly half of the sample population shows a higher REM of approximately 3.63% in average. The shocked target basalts around the Lonar crater also acquired an HC_HT magnetization component due to impact. These HC_HT components are mostly oriented in the uprange direction and are symmetrically disposed about the east–west plane of impact, making an obtuse angle with the direction of impact. The low‐coercivity and low‐temperature (LC_LT) components of both the unshocked and shocked basalts are statistically identical to the present day field (PDF) direction. This could be chemical and/or viscous remanent magnetization acquired by the target basalts during the last 570 ± 47 ka, subsequent to the formation of the Lonar crater. The shocked Lonar target basalts appear to have remagnetized under high impact shock pressure and at low temperature of approximately 200–300 °C, where Ti‐rich titanomagnetite was the main magnetic remanence carrier.  相似文献   

4.
We report on the microscopic impactor debris around Kamil crater (45 m in diameter, Egypt) collected during our 2010 geophysical expedition. The hypervelocity impact of Gebel Kamil (Ni‐rich ataxite) on a sandstone target produced a downrange ejecta curtain of microscopic impactor debris due SE–SW of the crater (extending ~300,000 m2, up to ~400 m from the crater), in agreement with previous determination of the impactor trajectory. The microscopic impactor debris include vesicular masses, spherules, and coatings of dark impact melt glass which is a mixture of impactor and target materials (Si‐, Fe‐, and Al‐rich glass), plus Fe‐Ni oxide spherules and mini shrapnel, documenting that these products can be found in craters as small as few tens of meters in diameter. The estimated mass of the microscopic impactor debris (<290 kg) derived from Ni concentrations in the soil is a small fraction of the total impactor mass (~10 t) in the form of macroscopic shrapnel. That Kamil crater was generated by a relatively small impactor is consistent with literature estimates of its pre‐atmospheric mass (>20 t, likely 50–60 t).  相似文献   

5.
Abstract— The impact melt breccias from the Tenoumer crater (consisting of a fine‐grained intergrowth of plagioclase laths, pyroxene crystals, oxides, and glass) display a wide range of porosity and contain a large amount of target rock clasts. Analyses of major elements in impact melt rocks show lower contents of SiO2, Al2O3, and Na2O, and higher contents of MgO, Fe2O3, and CaO, than the felsic rocks (i.e., granites and gneisses) of the basement. In comparison with the bulk analyses of the impact melt, the glass is strongly enriched in Si‐Al, whereas it is depleted both in Mg and Fe; moreover, the impact melt rocks are variably enriched or depleted in some REE with respect to the felsic and mafic bedrock types. Gold is slightly enriched in the impact melt, and Co, Cr, and Ni abundances are possibly due to a contribution from mafic bedrock. Evidences of silicate‐carbonate liquid immiscibility, mainly as spherules and globules of calcite within the silicate glass, have been highlighted. HMX mixing calculation confirm that the impact melt rocks are derived from a mixing of at least six different target lithologies outcropping in the area of the crater. A large contribution is derived from granitoids (50%) and mica schist (17–19%), although amphibolites (?15%), cherty limestones (?10%), and ultrabasites (?6%) components are also present. The very low abundances of PGE in the melt rock seem to come mainly from some ultrabasic target rocks; therefore, the contamination from the meteoritic projectile appears to have been negligible.  相似文献   

6.
Coesite has been identified within ejected blocks of shocked basalt at Lonar crater, India. This is the first report of coesite from the Lonar crater. Coesite occurs within SiO2 glass as distinct ~30 μm spherical aggregates of “granular coesite” identifiable both with optical petrography and with micro‐Raman spectroscopy. The coesite+glass occurs only within former silica amygdules, which is also the first report of high‐pressure polymorphs forming from a shocked secondary mineral. Detailed petrography and NMR spectroscopy suggest that the coesite crystallized directly from a localized SiO2 melt, as the result of complex interactions between the shock wave and these vesicle fillings.  相似文献   

7.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

8.
Geophysical techniques based on radioactivity measurements are not generally used for exploration of asteroid impact craters. Our studies on the field and laboratory measurements of radioactivity on samples from the Lonar crater, India, show that this technique could be an important method for mapping the distribution of ejecta around the deeply excavated impact craters particularly when these structures are formed on relatively old target rocks/palaeosol. The Lonar ejecta shows ~1.3 times higher γ-ray count rates in the field on average compared to the underlying palaeosol and ~1.9 times higher values over the target basalt while measured by a portable Geiger–Müller pulse counter. The absorbed γ-dose rate (D) of the Lonar samples, computed from 232Th, 238U, and 40K abundances in these samples, also show that the ejecta has distinct bulk dose rates (average ~8.42 nGy h?1) as compared to those of the palaeosol (~18.34 nGy h?1), target basalt (~11.97 nGy h?1), and the impact-melts and spherules (~14 nGy h?1). Therefore, radioactivity mapping of the terrestrial and planetary impact craters by direct methods has importance in mapping ejecta distributions around these structures.  相似文献   

9.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

10.
Abstract— An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 °C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high CI abundances (0.05 wt%), indicate that the North American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with <65 wt% SiO2) from the upper Eocene clinopyroxene-bearing spherule layer in the Indian Ocean have palagonitized rims. These spherules appear to have been altered in a similar fashion to the splash form K/T boundary spherules. Thus, our data indicate that tektites and microtektites that generally contain >65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.  相似文献   

11.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

12.
Abstract– Fourteen major basaltic units in Mare Serenitatis have been identified and mapped from differences in TiO2 wt%. The ages of these units have been inferred from their crater densities and reference to isotopically dated Apollo samples. It has been found that FeO and TiO2 wt% of the units do not show any apparent trend with time. However, the oldest units have much greater variation in FeO and TiO2 wt% than younger ones. No lateral trend in the age of the basaltic units is apparent within the basin. A vertical profile of Mare Serenitatis has been produced based on the depth of basalt within impact craters. The minimum depth of basalt has been estimated where craters have not exposed underlying highland material. The profile has been used to estimate the minimum volume of basalt within the basin to be ≈500,000 km3.  相似文献   

13.
The Dhala structure in north-central India is a confirmed complex impact structure of Paleoproterozoic age. The presence of an extraterrestrial component in impactites from the Dhala structure was recognized by geochemical analyses of highly siderophile elements and Os isotopic compositions; however, the impactor type has remained unidentified. This study uses Cr isotope systematics to identify the type of projectile involved in the formation of the Dhala structure. Unlike the composition of siderophile elements (e.g., Ni, Cr, Co, and platinum group elements) and their inter-element ratios that may get compromised due to the extreme energy generated during an impact, Cr isotopes retain the distinct composition of the impactor. The distinct ε54Cr value of −0.31 ± 0.09 for a Dhala impact melt breccia sample (D6-57) indicates inheritance from an impactor originating within the non-carbonaceous reservoir, that is, the inner Solar System. Based on the Ni/Cr ratio, Os abundance, and Cr isotopic composition of the samples, the impactor is constrained to be of ureilite type. Binary mixing calculations also indicate contamination of the target rock by 0.1–0.3 wt% of material from a ureilite-like impactor. Together with the previously identified impactors that formed El'gygytgyn, Zhamanshin, and Lonar impact structures, the Cr isotopic compositions of the Dhala impactites argue for a much more diverse source of the objects that collided with the Earth over its geological history than has been supposed previously.  相似文献   

14.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   

15.
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite.  相似文献   

16.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

17.
Abstract– We report bulk and olivine compositions in 66 stony cosmic spherules (Na2O < 0.76 wt%), 200–800 μm in size, from the Transantarctic Mountains, Antarctica. In porphyritic cosmic spherules, relict olivines that survived atmospheric entry heating are always Ni‐poor and similar in composition to the olivines in carbonaceous or unequilibrated ordinary chondrites (18 spherules), and equilibrated ordinary chondrites (one spherule). This is consistent with selective survival of high temperature, Mg‐rich olivines during atmospheric entry. Olivines that crystallized from the melts produced during atmospheric entry have NiO contents that increase with increasing NiO in the bulk spherule, and that range from values similar to those observed in chondritic olivines (NiO generally <0.5 wt%) to values characteristic of olivines in meteoritic ablation spheres (NiO > 2 wt%). Thus, NiO content in olivine cannot be used alone to distinguish meteoritic ablation spheres from cosmic spherules, and the volatile element contents have to be considered. We propose that the variation in NiO contents in cosmic spherules and their olivines is the result of variable content of Fe, Ni metal in the precursor. NiO contents in olivines and in cosmic spherules can thus be used to discuss their parent body. Ni‐poor spherules can be derived from C‐rich and/or metal‐poor precursors, either related to CM, CI, CR chondrites or to chondritic fragments dominated by silicates, regardless of the parent body. Ni‐rich spherules (NiO > 0.7 wt%) that represent 55% of the 47 barred‐olivine spherules we studied, were derived from the melting of C‐poor, metal‐rich precursors, compatible with ordinary chondrite or CO, CV, CK carbonaceous chondrite parentages.  相似文献   

18.
Abstract— The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock‐metamorphosed minerals. The shocked minerals represent impact ejecta from the 74‐Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84‐21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal‐unit samples, mainly from the Gregory 84‐21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29–58 wt%), Al2O3 (6–14 wt%), and CaO (7–30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75–99), coupled with the Al2O3‐(CaO*+Na2O)‐K2O (A‐CN'‐K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present‐day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta.  相似文献   

19.
Abstract— Darwin glass formed about 800,000 years ago in western Tasmania, Australia. Target rocks at Darwin crater are quartzites and slates (Siluro‐Devonian, Eldon Group). Analyses show 2 groups of glass, Average group 1 is composed of: SiO2 (85%), Al2O3 (7.3%), TiO2 (0.05%), FeO (2.2%), MgO (0.9%), and K2O (1.8%). Group 2 has lower average SiO2 (81.1%) and higher average Al2O3 (8.2%). Group 2 is enriched in FeO (+1.5%), MgO (+1.3%) and Ni, Co, and Cr. Average Ni (416 ppm), Co (31 ppm), and Cr (162 ppm) in group 2 are beyond the range of sedimentary rocks. Glass and target rocks have concordant REE patterns (La/Lu = 5.9–10; Eu/Eu* = 0.55–0.65) and overlapping trace element abundances. 87Sr/86Sr ratios for the glasses (0.80778–0.81605) fall in the range (0.76481–1.1212) defined by the rock samples. ε‐Nd results range from –13.57 to –15.86. Nd model ages range from 1.2–1.9 Ga (CHUR) and the glasses (1.2–1.5 Ga) fall within the range defined by the target samples. The 87Sr/86Sr versus 87Rb/86Sr regression age (411 ± 42 Ma) and initial ratio (0.725 ± 0.016), and the initial 43Nd/144Nd ratio (0.51153 ± 000011) and regression age (451 ± 140 Ma) indicate that the glasses have an inherited isotopic signal from the target rocks at Darwin crater. Mixing models using target rock compositions successfully model the glass for all elementsexcept FeO, MgO, Ni, Co, and Cr in group 2. Mixing models using terrestrial ultramafic rocks fail to match the glass compositions and these enrichments may be related to the projectile.  相似文献   

20.
Abstract– The 45 m in diameter Kamil impact crater was formed <5000 yr ago in the eastern Sahara, close to the southern border of modern Egypt. The original features of this structure, including thousands of fragments of the meteorite impactor, are extremely well preserved. With the exception of a single 83 kg regmaglypted individual, all specimens of Gebel Kamil (the iron meteorite that formed the Kamil crater) are explosion fragments weighing from <1 g to 34 kg. Gebel Kamil is an ungrouped Ni‐rich (about 20 wt% Ni) ataxite characterized by high Ge and Ga contents (approximately 120 μg g?1 and approximately 50 μg g?1, respectively) and by a very fine‐grained duplex plessite metal matrix. Accessory mineral phases in Gebel Kamil are schreibersite, troilite, daubréelite, and native copper. Meteorite fragments are cross‐cut by curvilinear shear bands formed during the explosive terrestrial impact. A systematic search around the crater revealed that meteorite fragments have a highly asymmetric distribution, with greater concentrations in the southeast sector and a broad maximum in meteorite concentration in the 125–160° N sector at about 200 m from the crater rim. The total mass of shrapnel specimens >10 g, inferred from the density map compiled in this study is 3400 kg. Field data indicate that the iron bolide approached the Earth’s crust from the northwest (305–340° N), travelling along a moderately oblique trajectory. Upon hypervelocity impact, the projectile was disrupted into thousands of fragments. Shattering was accompanied by some melting of the projectile and of the quartz‐arenite target rocks, which also suffered shock metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号