首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

2.
Abstract— The Zagami shergottite experienced a complex, petrogenetic formation history (McCoy et al. 1992, 1999). Like several shergottites, Zagami contains excess 40Ar relative to its formation age. To understand the origin of this excess 40Ar, we made 39Ar‐40Ar analyses on plagioclase and pyroxene minerals from two phases representing different stages in the magma evolution. Surprisingly, all these separates show similar concentrations of excess 40Ar, ?1 × 10?6 cm3/g. We present arguments against this excess 40Ar having been introduced from the Martian atmosphere as impact glass. We also present evidence against excess 40Ar being a partially degassed residue from a basalt that actually formed ?4 Gyr ago. We utilize our experimental data on Ar diffusion in Zagami and evidence that it was shock‐heated to only ?70 °C, and we assume this heating occurred during an ejection from Mars ?3 Myr ago. With these constraints, thermal considerations necessitates either that its ejected mass was impossibly large, or that its shock‐heating temperature was an order of magnitude higher than that measured. We suggest that this excess 40Ar was inherited from the Zagami magma, and that it was introduced into the magma either by degassing of a larger volume of material or by early assimilation of old, K‐rich crustal material. Similar concentrations of excess 40Ar in the analyzed separates imply that this magma maintained a relatively constant 40Ar concentration throughout its crystallization. This likely occurred through volatile degassing as the magma rose toward the surface and lithostatic pressure was released. These concepts have implications for excess 40Ar in other shergottites.  相似文献   

3.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

4.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

5.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

6.
Abstract— The 40Ar‐39Ar dating technique has been applied to the lunar meteorites Northwest Africa 032 (NWA 032), an unbrecciated mare basalt, and Northwest Africa 773 (NWA 773), (composed of cumulate and breccia lithologies), to determine the crystallization age and timing of shock events these meteorites may have experienced. Stepped heating analyses of several different samples of NWA 032 gave complex age spectra but indistinguishable total ages with a mean of 2.779 ± 0.014 Gyr. Possible causes of the complex age spectra obtained from NWA 032 include recoil of 39Ar, or the presence of pre‐shock 40Ar incorporated into shock‐melt veins. The effects of shock veins were investigated by laser fusion of 20 small samples expected to contain varying proportions of the shock veins. The laser ages show a narrow age distribution between 2.61–2.86 Gyr and a mean of 2.73 ± 0.03 Gyr, identical to the total age of ?2.80 Gyr obtained for the bulk sample. Diffusion calculations based on the stepped heating data indicate that Ar release can be reconciled by release from feldspar (and possibly shock veins) at low temperatures followed by pyroxene at higher temperatures. The exposure age of NWA 032 is 212 ± 11 Myr, and it contains low trapped solar Ar. Stepped heating of cumulate and breccia portions of NWA 773 also give a relatively young age of 2.91 Gyr. The presence of trapped Ar in the breccia makes the age determination of this component less precise, but release of Ar appears to be from the same mineral phase, assumed to be plagioclase, in both lithologies. A marked difference in exposure age between the 2 lithologies also exists, with the breccia having spent 81 Myr longer at the lunar surface; this finding is consistent with the higher trapped Ar content of this lithology. Assuming that 2.80 Gyr and 2.91 Gyr are the crystallization ages of NWA 032 and NWA 773 respectively, these two meteorites are the youngest lunar mare basalts available for study.  相似文献   

7.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   

8.
The shergottites are the largest group of Martian meteorites, and the only group that has not been found to contain definitive evidence of Martian aqueous alteration. Given recent reports of current liquid water at the surface of Mars, this study aimed to investigate in detail the possibility of Martian phyllosilicate within shergottite Dhofar 019. Optical and scanning electron microscopy, followed by transmission electron microscopy, confirmed the presence of alteration orangettes, with a layered structure consisting of poorly ordered Mg‐phyllosilicate and calcite. These investigations identified maskelynite dissolution, followed by Mg‐phyllosilicate and calcite deposition within the dissolution pits, as the method of orangette production. The presence of celestine within the orangette layers, the absence of shock dislocation features within calcite, and the Mg‐rich nature of the phyllosilicate, all indicate a terrestrial origin for these features on Dhofar 019.  相似文献   

9.
New petrography and 40Ar‐39Ar ages have been obtained for 1–3 mm sized rock fragments from Apollo 16 Station 13 soil 63503 (North Ray crater ejecta) and chips from three rocks collected by Apollo 16 and Apollo 17 missions. Selection of these samples was aimed at the old 40Ar‐39Ar ages to understand the early history of the lunar magnetic field and impact flux. Fifteen samples were studied including crustal material, polymict feldspathic fragmental breccias, and impact melts. The impact ages obtained range between approximately 3.3 and 4.3 billion years (Ga). Polymict fragmental breccia 63503,1 exhibits the lowest signs of recrystallization observed and a probable old relic age of 4.547 ± 0.027. The plateau age of 4.293 ± 0.044 Ga obtained for impact melt rock 63503,13 represents the oldest known age for such a lithology. Possibly, this age represents the minimum age for the South Pole‐Aitken (SPA) Basin. In agreement with literature data, these results show that impact ages >3.9 Ga are found in lunar rocks, especially within soil 63503. Impact exhumation of deep‐seated warm crustal material onto the lunar surface is considered to explain the common 4.2 Ga ages obtained for weakly shocked samples from soil 63503 and Apollo 17. This would directly imply that one or more basin‐forming events occurred at that time. Some rock fragments showing none to limited petrologic features indicate thermal annealing. These rocks may have lost Ar while resident within the hot‐ejecta of a large basin. Concurrent with previous studies, these results lead us to advocate for a complex impact flux in the inner solar system during the initial approximately 1.3 Ga.  相似文献   

10.
Abstract— We report a high‐resolution 40Ar‐39Ar study of mineral separates and whole‐rock samples of olivine‐phyric (Dhofar 019, Sayh al Uhaymir [SaU] 005) and basaltic (Shergotty, Zagami) shergottites. Excess argon is present in all samples. The highest (40Ar/36Ar)trapped ratios are found for argon in pyroxene melt inclusions (?1500), maskelynite (?1200), impact glass (?1800) of Shergotty and impact glass of SaU 005 (?1200). A high (40Ar/36Ar)trapped component‐usually uniquely ascribed to Martian atmosphere‐can also originate from the Martian interior, indicating a heterogeneous Martian mantle composition. As additional explanation of variable high (40Ar/36Ar)trapped ratios in shocked shergottites, we suggest argon implantation from a “transient atmosphere” during impact induced degassing. The best 40Ar‐39Ar age estimate for Dhofar 019 is 642 ± 72 Ma (maskelynite). SaU 005 samples are between 700–900 Ma old. Relatively high 40Ar‐39Ar ages of melt inclusions within Dhofar 019 (1086 ± 252 Ma) and SaU 005 olivine (885 ± 66 Ma) could date entrapment of a magmatic liquid during early olivine crystallization, or reflect unrecognized excess 40Ar components. The youngest 40Ar‐39Ar age of Shergotty separates (maskelynite) is ?370 Ma, that of Zagami is ?200 Ma. The 40Ar‐39Ar chronology of Dhofar 019 and SaU 005 indicate >1 Ga ages. Apparent ages uncorrected for trapped (e.g., Martian atmosphere, mantle) argon components approach 4.5 Ga, but are not caused by inherited 40Ar, because excess 40Ar is supported by 36Artrapped. Young ages obtained by 40Ar‐39Ar and other chronometers argue for primary rather than secondary events. The cosmic ray exposure ages calculated from cosmogenic argon are 15.7 ± 0.7 Ma (Dhofar 019), 1.0–1.6 Ma (SaU 005), 2.1–2.5 Ma (Shergotty) and 2.2–3.0 Ma (Zagami).  相似文献   

11.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

12.
Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar‐39Ar step‐heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar‐Ar step‐heating spectrum available in the literature. Almost all samples display saddle‐shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2–40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.  相似文献   

13.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

14.
A new method for deriving statistical parallaxes is proposed. The method uses the symmetry in the distribution of the Z-component of the stellar space velocity vectors. It should be suited to derive the statistical parallaxes of stars of population II, for which the usual method fails.  相似文献   

15.
16.
Abstract— We studied 42 impact‐melt clasts from lunar feldspathic regolith breccias MacAlpine Hills (MAC) 88105, Queen Alexandra Range (QUE) 93069, Dar al Gani (DaG) 262, and DaG 400 for texture, chemical composition, and/or chronology. Although the textures are similar to the impactmelt clasts identified in mafic Apollo and Luna samples, the meteorite clasts are chemically distinct from them, having lower Fe, Ti, K, and P, thus representing previously unsampled impacts. The 40Ar‐39Ar ages on 31 of the impact melts, the first ages on impact‐melt samples from outside the region of the Apollo and Luna sampling sites, range from ~4 to ~2.5 Ga. We interpret these samples to have been created in at least six, and possibly nine or more, different impact events. One inferred impact event may be consistent with the Apollo impact‐melt rock age cluster at 3.9 Ga, but the meteorite impact‐melt clasts with this age are different in chemistry from the Apollo samples, suggesting that the mechanism responsible for the 3.9 Ga peak in lunar impact‐melt clast ages is a lunar‐wide phenomenon. No meteorite impact melts have ages more than 1s? older than 4.0 Ga. This observation is consistent with, but does not require, a lunar cataclysm.  相似文献   

17.
18.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

19.
We present results of a study of the so-called “stickiness” regions where orbits in mappings and dynamical systems stay for very long times near an island and then escape to the surrounding chaotic region. First we investigated the standard map in the form xi+1 = xi+yi+1 and yi+1 = yi+K/2π · sin(2πxi) with a stochasticity parameter K = 5, where only two islands of regular motion survive. We checked now many consecutive points—for special initial conditions of the mapping—stay within a certain region around the island. For an orbit on an invariant curve all the points remain forever inside this region, but outside the “last invariant curve” this number changes significantly even for very small changes in the initial conditions. In our study we found out that there exist two regions of “sticky” orbits around the invariant curves: A small region I confined by Cantori with small holes and an extended region II is outside these cantori which has an interesting fractal character. Investigating also the Sitnikov-Problem where two equally massive primary bodies move on elliptical Keplerian orbits, and a third massless body oscillates through the barycentre of the two primaries perpendicularly to the plane of the primaries—a similar behaviour of the stickiness region was found. Although no clearly defined border between the two stickiness regions was found in the latter problem the fractal character of the outer region was confirmed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号