首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Type B coarse‐grained calcium‐aluminum‐rich inclusions (CAIs) are the oldest known materials to have formed in the solar system and are a unique source of information regarding conditions and processes in the protoplanetary disk around the young sun. Recent experimental results on the crystallization and evaporation of type B‐like silicate melts allow us to place the following constraints on the conditions in the protoplanetary disk during the formation of type B CAIs. 1) Once type B CAIs precursors have been condensed from a solar composition gas, they were reheated at 1250–1450 °C, as is indicated by their igneous texture. 2) The melilite mantles characteristic of type B1 CAIs could be formed by crystallization of magnesium‐ and silicon‐depleted melt in the outer part of the partially molten droplets. Such depletion can arise when evaporation is fast compared to chemical diffusion in the melt. This requires the pressure of the surrounding solar composition gas to be at least 10−4 bars during the initial crystallization of melilite mantle. Type B2 CAIs with uniform distribution of melilite are expected to form at pressures less than 10−5 bars. 3) Evaporation calculations are used to place bounds on the thermal history of the type B CAIs. Observed compositional zoning in melilite suggests that the temperatures in the protoplanetary disk where the type B CAIs resided after crystallization could not have exceeded ˜1000 °C for more than a few tens of thousands of years. A recent calculation of the physical conditions associated with nebular shocks produced transient temperatures and gas pressures very much like what we find is required to melt reasonable CAI precursors and evaporate these sufficiently quickly to make a type B1 CAI.  相似文献   

2.
Magnesium and silicon isotopic profiles across melilite grains in two type B1 and two type B2 calcium‐aluminum‐rich inclusions (CAIs) reveal differing but constant enrichments in heavy isotopes everywhere except ≤1000 μm from the CAI margins. There is no close correlation in the B1s or the B2s between isotopic composition and åkermanite content of the melilite, a measure of progressive igneous crystallization, yet such a correlation might be expected in a type B2: without a melilite mantle (as in B1s) to seal the interior off and prevent further evaporation, the melt would have maintained communication with the external gas. These observations indicate a model in which B1s and B2s solidified under differing conditions. The B2s solidified under lower hydrogen pressures ( ≤ 10?4 – 10?5 bars) than did B1s ( > 10?4 bars), so surface volatilization was slower in the B2s and internal chemical and isotopic equilibrium was maintained over the interval of melilite crystallization. The outermost zones of the CAIs (≤1000 μm from the edge) are not consistently enriched in heavy isotopes relative to the interiors, as might be expected from diffusion‐limited surface evaporation of the melt. In all cases, the magnesium in the CAI margins is lighter than in the interiors. In one case, silicon in the margin also is lighter, but locally in some CAIs, it is isotopically heavier near the surface. If melt evaporation played a role in the formation of these outer zones, a later event in many cases caused isotopic re‐equilibration with an external and isotopically near‐normal reservoir.  相似文献   

3.
Gerhard Wurm  Oliver Krauss 《Icarus》2006,180(2):487-495
The high concentration and sorting of chondrules, sub-mm sized spherules found in undifferentiated meteorites, is one of the great unsolved mysteries in planetology. Here we present a unifying explanation for these phenomena based on the assumption that chondrules were present when the Solar Nebula was optically thin but had a significant amount of gas. An immediate consequence is that chondrules feel a force known as photophoresis. Photophoresis is based on a temperature gradient over the surface of a particle resulting from absorption of radiation and non-uniform interaction with its gaseous environment. In comparison to well-known forces originating from starlight, i.e. radiation pressure, Poynting-Robertson drag, or the Yarkovski effect, photophoresis can be stronger by many orders of magnitude in gaseous environments. In the application discussed here photophoresis concentrates chondrules and CAIs, which are both found in chondrites, in the region of the asteroid belt. Chondrules from any place in the Solar Nebula will be dragged to the asteroid belt region, while smaller dust particles and their aggregates will be removed from this region at the same time. This leads to a high relative concentration of chondrules, sorted with respect to their thermal conductivity, density, and size, for building chondrite parent bodies. Furthermore, photophoresis prevents CAIs from being lost to the Sun.  相似文献   

4.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   

5.
We present computed radiation spectra for the boundary layer (BL) of the accretion disk that is formed near the surface of a neutron star. Both free-free processes and Comptonization were taken into account. Our computations are based on the hydrodynamic solution obtained by Popham and Sunyaev (2001) for the BL structure. The computed spectra are highly diluted compared to the Planck spectra of the same surface temperature. They are complex in shape; in particular, an intense Wien emission component is formed in their high-energy region at high accretion rates. In general, the computed spectra are harder than those observed in actual X-ray sources. This is the result of a very high temperature found by Popham and Sunyaev (2001) for the BL. We show that such temperatures could result from an oversimplified treatment of radiative transfer in their paper, which completely ignored the frequency dependence of the matter opacity and radiation intensity. Our computations indicate that at moderate accretion rates, a proper treatment of radiative transfer with allowance for Comptonization leads to appreciably lower plasma temperatures and to softer radiation spectra.  相似文献   

6.
Abstract– In the scenario developed here, most types of calcium‐aluminum‐rich inclusions (CAIs) formed near the Sun where they developed Wark‐Lovering rims before being transported by aerodynamic forces throughout the nebula. The amount of ambient dust in the nebula varied with heliocentric distance, peaking in the CV–CK formation location. Literature data show that accretionary rims (which occur outside the Wark‐Lovering rims) around CAIs contain substantial 16O‐rich forsterite, suggesting that, at this time, the ambient dust in the nebula consisted largely of 16O‐rich forsterite. Individual sub‐millimeter‐size Compact Type‐A CAIs (each surrounded by a Wark‐Lovering rim) collided in the CV–CK region and stuck together (in a manner similar to that of sibling compound chondrules); the CTAs were mixed with small amounts of 16O‐rich mafic dust and formed centimeter‐size compound objects (large Fluffy Type‐A CAIs) after experiencing minor melting. In contrast to other types of CAIs, centimeter‐size Type‐B CAIs formed directly in the CV–CK region after gehlenite‐rich Compact Type‐A CAIs collided and stuck together, incorporated significant amounts of 16O‐rich forsteritic dust (on the order of 10–15%) and probably some anorthite, and experienced extensive melting and partial evaporation. (Enveloping compound chondrules formed in an analogous manner.) In those cases where appreciably higher amounts of 16O‐rich forsterite (on the order of 25%) (and perhaps minor anorthite and pyroxene) were incorporated into compound Type‐A objects prior to melting, centimeter‐size forsterite‐bearing Type‐B CAIs (B3 inclusions) were produced. Type‐B1 inclusions formed from B2 inclusions that collided with and stuck to melilite‐rich Compact Type‐A CAIs and experienced high‐temperature processing.  相似文献   

7.
Abstract— We determined the iron oxidation state and coordination number in five samples of yellow impact glass from the Cretaceous‐Tertiary (K/T) boundary section at Beloc, Haiti, which formed as the result of impact melting during the Chicxulub impact event. The samples were analyzed by Fe K‐edge XANES spectroscopy and the results were compared with published data on eight black impact glasses and one high Si‐K impact spherule from the same impact layer. The pre‐edge peak of our high‐resolution XANES spectra displays evident variations indicative of significant changes in the Fe oxidation state, spanning a wide range from about 75 to 100 mole% Fe3+. Yellow K/T glasses have significantly higher Fe3+/(Fe2+ + Fe3+) ratios compared to black K/T impact glasses (from 20 to 75 mole% Fe3+) and high Si‐K glass (20 mole% Fe3+). In particular, all the pre‐edge peak data on these three types of impact glasses plot between two mixing lines joining a point calculated as the mean of a group of tektites studied so far (consisting of [4]Fe2+ and [5]Fe2+) to [4]Fe3+ and [5]Fe3+, respectively. Thus, the XANES spectra of the yellow K/T glasses can be interpreted as a mixture of [4]Fe2+, [5]Fe2+, [4]Fe3+, and [5]Fe3+. Our observations can be explained by a very large range of oxygen fugacity conditions during melt formation. Furthermore, there is a clear positive relationship between the Fe3+/(Fe2+ + Fe3+) ratio and the Ca content of these glasses, suggesting that the Fe oxidation state was influenced by the relative contribution of Ca‐sulfate‐ and Ca‐carbonate‐bearing sedimentary rocks at the impact site.  相似文献   

8.
9.
Abstract— We present laboratory mid‐infrared absorption spectra (2.5 urn to 16.0 μm) of powdered calcium‐aluminum‐rich inclusions (CAIs) and matrix separated from the carbonaceous chondrites Allende (CV3.2), Vigarano (CV3.3), and Ornans (C03.3). Two groups of spectra with different features were found for the CAI: in the first group spectra are dominated by spinel, pyroxene, and sodalite ± nepheline, where main features occur at 9.3 μm, 10.3 μm, and 11.3 μm. In the second group, characteristic minerals are spinel and melilite with typical band maxima at 11.0 μm and 12.3 μm, and a broad feature between 14.0 μn and 15.0 μn. The position of the broad spinel feature probably depends on its iron content. Comparison of band positions in spectra from the CAI components to observed circumstellar emission spectra indicates the potential occurrence of CAI‐like material. Pyroxene‐ and spinel‐rich features could occur in spectra of dust around the Herbig Ae star HD104237, the T Tauri star Hen3‐600 and the post‐AGB star R Sge. Melilite‐ and spinel‐rich components possibly appear in the spectrum of HD 104237, Hen3‐600, 04187_1927, R Sge, and the planetary nebula Hb 12. There is also indication for a spinel component in dust from the Herbig Ae/Be star HD 179218. The spectra of the AGB stars R Cas and θ Aps show no features of CAl‐type spinel.  相似文献   

10.
In this paper we discuss the broad-band X-ray characteristics of a complete sample of 36 type 1 active galactic nuclei (AGN), detected by INTEGRAL in the 20–40 keV band above the 5.5σ level. We present, for all the objects in the sample, the broad-band (1–110 keV) spectral analysis obtained by using INTEGRAL / Swift /Burst Alert Telescope observations together with XMM–Newton , Chandra , ASCA and Swift /X-Ray Telescope data. We also present the general average properties of the sample, i.e. the distribution of photon indices, high-energy cut-offs, reflection fractions and absorption properties, together with an in-depth analysis of their parameter space. We find that the average Seyfert 1 power law has an index of 1.7 with a dispersion of 0.2. The mean cut-off energy is at around 100 keV, with most objects displaying E c in the range 50–150 keV; the average amount of Compton reflection is 1.5 with a typical dispersion of 0.7. We do not find any convincing correlation between the various parameters, an indication that our analysis is not strongly dependent by the interplay between them. Finally, we investigate how the results presented in this work fit into current frameworks for AGN spectral modelling and cosmic diffuse X-ray background synthesis models.  相似文献   

11.
Allan Hills A77255, Babb's Mill (Blake's Iron), Nordheim, and Chinga are ungrouped ataxitic iron meteorites that are similar to the IAB group of noncarbonaceous-type irons in their concentrations of common and refractory siderophile elements. Mo-isotopic data show that ALHA77255, Nordheim, and Chinga are carbonaceous-type (CC) irons. (The Mo-isotopic composition of Babb's Mill [Blake's Iron] has not yet been measured, but it also seems likely to be a CC iron.) Relative to mean IAB irons, these four ataxites are severely depleted in moderately volatile elements: Ga, >99%; Ge, >99%; Cu, 79%–97%; As, 70%–96%; P, 76%–90%. These samples were probably devolatilized by major collisions on separate parent asteroids (consistent with fractional crystallization modeling showing they are unlikely to be derived from the same metallic core). Collisionally induced devolatilization of ALHA77255 likely facilitated the formation of a 5-mm diameter silica–glass spheroid in this meteorite. The spheroid may have formed by a complex process involving impact-induced vaporization of mantle material in its parent asteroid, followed by fractional condensation.  相似文献   

12.
Abstract— Among the calcium‐aluminum‐rich inclusions (CAIs), excess 41K (41K*), which was produced by the decay of the short‐lived radionuclide 41Ca (t1/2 = 0.1 Myr), has so far been detected in fassaite and in two grains of melilites. These observations could be used to provide important constraints on the thermal history and size of the planetesimals into which the CAIs were incorporated, provided the diffusion kinetic properties of K in these minerals are known. Thus, we have experimentally determined K diffusion kinetics in the melilite end‐members, åkermanite and gehlenite, as a function of temperature (900–1200 °C) and crystallographic orientation at 1 bar pressure. The closure temperature of K diffusion in melilite, Tc(K:mel), for the observed grain size of melilite in the CAIs and cooling rate of 10–100 °C/Myr, as calculated from our diffusion data, is much higher than that of Mg in anorthite. The latter was calculated from the available Mg diffusion data in anorthite. Assuming that the planetesimals were heated by the decay of 26Al and 60Fe, we have calculated the size of a planetesimal as a function of the accretion time tf such that the peak temperature at a specified radial distance rc equals Tc(K:mel). The ratio (rc/R)3 defines the planetesimal volume fraction within which 41K* in melilite grains would be at least partly disturbed, if these were randomly distributed within a planetesimal. A similar calculation was also carried out to define R versus tf relation such that 26Mg* was lost from ?50% of randomly distributed anorthite grains, as seems to be suggested by the observational data. These calculations suggest that ?60% of melilite grains should retain 41K* if ?50% of anorthite grains had retained 26Mg*. Assuming that tf was not smaller than the time of chondrule formation, our calculations yield minimum planetesimal radius of ?20–30 km, depending on the choice of planetesimal surface temperature and initial abundance of the heat producing isotope 60Fe.  相似文献   

13.
14.
H.A. Dal  S. Evren 《New Astronomy》2012,17(4):399-410
In this study, we present the unpublished flare data collected from 222 flares detected in the B band observations of five stars and the results derived by statistical analysis and modeling of these data. Six basic properties have been found with a statistical analysis method applied to all models and analyses for the flares detected in the B band observation of UV Ceti type stars. We have also compared the U and B bands with the analysis results. This comparison allowed us to evaluate the methods used in the analyses. The analyses provided the following results. (1) The flares were separated into two types, fast and slow flares. (2) The mean values of the equivalent durations of the slow and the fast flares differ by a factor of 16.2 ± 3.7. (3) Regardless of the total flare duration, the maximum flare energy can reach a different Plateau level for each star. (4) The Plateau values of EV Lac and EQ Peg are higher than the others. (5) The minimum values of the total flare duration increase toward the later spectral types. This value is called the Half-Life value in models. (6) Both the maximum flare rise times and the total flare duration obtained from the observed flares decrease toward the later spectral types.  相似文献   

15.
16.
Abstract— The measurements of magnesium and potassium isotopic compositions of refractory minerals in Allende calcium‐aluminum‐rich inclusions (CAIs), 7R‐19–1, HN3–1, and EGG3 were taken by secondary ion mass spectrometry (SIMS). The 7R‐19–1 contains 16O‐rich and 16O‐poor melilite grains and define a single isochron corresponding to an initial 26Al/27Al ratio of (6.6 ± 1.3) × 10?5. The Al‐Mg isochron, O isotope measurements and petrography of melilite in 7R‐19–1 indicate that 16O‐poor melilite crystallized within 0.4 Myr after crystallization of 16O‐rich melilite, suggesting that oxygen isotopic composition of the CAI‐forming region changed from 16O‐rich to 16O‐poor within this time interval. The 16O‐poor melilite is highly depleted in K compared to the adjacent 16O‐rich melilite, indicating evaporation during remelting of 7R‐19–1. We determined the isochron for 41Ca‐41K isotopic systematics in EGG3 pyroxene with (4.1 ± 2.0) × 10?9 (2s?) as an initial ratio of 41Ca/40Ca, which is at least two times smaller than the previous result (Sahijipal et al. 2000). The ratio of 41Ca/40Ca in the EGG3 pyroxene grain agrees within error with the value obtained by Hutcheon et al. (1984). No evidence for the presence of 41K excess (decay product of a short‐lived radionuclide 41Ca) was found in 7R‐19–1 and HN3–1. We infer that the CAI had at least an order of magnitude lower than canonical 41Ca/40Ca ratio at the time of the CAI formation.  相似文献   

17.
18.
Erevan State University; Institute of Applied Physics Problems, Armenian Academy of Sciences. Translated from Astrofizika, Vol. 31, No. 2, pp. 271–279, September–October, 1989.  相似文献   

19.
In this short paper, we suggest that the missing boundary layer luminosity of dwarf novae in quiescence is released mainly in the ultraviolet (UV) as the second component commonly identified in the far-UV as the 'accretion belt'. We present the well-studied SU UMa-type system VW Hyi in detail as a prototype for such a scenario. We consider detailed multiwavelength observations and in particular the recent Far Ultraviolet Spectroscopic Explorer ( FUSE ) observations of VW Hyi in quiescence, which confirm the presence of a second component (the 'accretion belt') in the far-UV spectrum. The temperature  (≈ 50 000 K)  and rotational velocity  (≈ 3000 km s −1)  of this second component are entirely consistent with the optically thick region  (τ≈ 1)  located just at the outer edge of optically thin boundary layer in the simulations of Popham. This second component contributes about 20 per cent of the far-UV flux. Using geometrical assumptions and taking into account the X-ray luminosity, we find that the total boundary layer luminosity sums up to   L BL= (0.53 ± 0.25) L disc  , while the theory (Kluźniak) predicts, for the rotation rate of VW Hyi's white dwarf,   L BL≈ (0.76 ± 0.03) L disc  . About one-fifth of the boundary layer energy is emitted in the X-ray and the remaining is emitted in the UV. This scenario is consistent with the recent simultaneous X-ray and UV observations of VW Hyi by Pandel, Córdova & Howell, from which we deduce here that the viscosity in the boundary layer region must be of the order of  ν≈ 1013–1014 cm2 s −1  , depending on the white dwarf mass and the size of the boundary layer.  相似文献   

20.
This contribution addresses the role of chemical composition, pressure, temperature, and time during the shock transformation of plagioclase into diaplectic glass—i.e., maskelynite. Plagioclase of An50‐57 and An94 was recovered as almost fully isotropic maskelynite from room temperature shock experiments at 28 and 24 GPa. The refractive index (RI) decreased to values of a quenched mineral glass for An50‐57 plagioclase shocked to 45 GPa and shows a maximum in An94 plagioclase shocked to 41.5 GPa. The An94 plagioclase experiments can serve as shock thermobarometer for lunar highland rocks and howardite, eucrite, and diogenite meteorites. Shock experiments at 28, 32, 36, and 45 GPa and initial temperatures of 77 and 293 K on plagioclase (An50‐57) produced materials with identical optical and Raman spectroscopic properties. In the low temperature (<540 K) region, the formation of maskelynite is entirely controlled by shock pressure. The RI of maskelynite decreased in heating experiments of 5 min at temperatures of >770 K, thus, providing a conservative upper limit for the postshock temperature history of the rock. Although shock recovery experiments and static pressure experiments differ by nine orders of magnitude in typical time scale (microseconds versus hours), the amorphization of plagioclase occurs at similar pressure and temperature conditions with both methods. The experimental shock calibration of plagioclase can, together with other minerals, be used as shock thermobarometer for naturally shocked rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号