首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

2.
The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwest China. To constrain the age of a number of the major granitic plutons from the Yidun Arc, laser ablation ICP-MS U/Pb analysis of zircon was conducted. Hafnium isotope data was also acquired through laser-ablation multicollector ICPMS analysis of zircon, with the aim of gaining insight into the age and nature of the source region of the plutons. Three age groups have been identified from seven granite samples: Early–Middle Triassic ( 245 to 229 Ma), Late Triassic ( 219 to 216 Ma) and Cretaceous ( 105 to 95 Ma). Hafnium analysis shows the Triassic granites to have negative and variable εHf values and Mesoproterozoic ( 1.6 Ga) depleted-mantle model ages, which is interpreted to reflect derivation from an isotopically heterogeneous, largely crustal source. The Cretaceous granite shows higher and less variable εHf values and slightly younger model ages ( 1.3 Ga), and is interpreted to be derived from melting of a more homogeneous crustal source. A depleted-mantle model age of  1.5 Ga is calculated from the pooled Triassic and Cretaceous samples. The source region for these magmas may be tentatively correlated with Mesoproterozoic material of the Yangtze Craton, which has been suggested to underlie the Yidun Arc; however, further work is necessary to demonstrate this suggestion.  相似文献   

3.
Mineralizing fluids at the San Martín skarn show an evolution characterized by prograde and retrograde associations. The prograde mineral associations consist of (1) a massive garnet zone, (2) a tremolite ± garnet zone, and (3) a late association of quartz, sphalerite, calcite and fluorite lining the vugs in the garnet zone. The fluids of the prograde associations exhibit decreasing temperatures of homogenization (Th) and variable salinities. The fluids of the massive garnet zone have salinities of 36 wt.% NaCl equiv. and Th of 645 to 570 °C, corresponding to pressures of 1055 bar. At the tremolite ± garnet zone, Th range from 438 to 354 °C. In the late association at the endoskarn, the following evolution can be drawn: (a) salinities of 50 to 42 wt.% NaCl equiv., and Th of 455 to 346 °C in quartz, (b) salinities of 46 wt.% NaCl equiv., and Th of 415 to 410 °C in sphalerite, (c) salinities of 50 to 37 wt.% NaCl equiv., and Th of 479 to 310 °C in calcite, (d) salinities of 33 to 28 wt.% NaCl equiv. and of 24 to 22 wt.% KCl in fluorite, and (e) two types of fluids with salinities of 2 and 39 wt.% NaCl equiv. and Th 344 and 300 °C, respectively, in later saccharoidal quartz segregations. The retrograde mineral associations comprise pervasive propylitic alteration to carbonization, and mantos with sulfides. Fluids in epidote have salinities of 7.6 wt.% NaCl equiv. and Th of 287 to 252 °C, and in calcite have salinities of 9.2 to 1 wt.% NaCl equiv. and Th of 188 to 112 °C. Fluids in the sulfide assemblages in the mantos have salinities of 8 to 3 wt.% NaCl equiv. and Th 300 °C, with corresponding pressures of 94 bar. Fluids in late epithermal veins close to the intrusive body have salinities of 10 to 5 wt.% NaCl equiv. and Th of 275 to 200 °C, and distal veins show salinities of 2 to 1 wt.% NaCl equiv. and Th of 160 °C.  相似文献   

4.
The Tan–Lu Fault Zone (TLFZ) extends in a NNE–SSW direction for more than 2000 km in Eastern China. It has been considered either as a major sinistral strike-slip fault, as a suture zone or as a normal fault. We have conducted a structural analysis of the southern segment of this fault zone (STLFZ) in the Anhui Province. The ages (Triassic to Palaeocene) of the formations affected by the faults have been re-appraised taking into account recent stratigraphical studies to better constraint the ages of the successive stages of the kinematics of the STLFZ. Subsequently, the kinematics of the faults is presented in terms of strain/stress fields by inversion of the striated fault set data. Finally, the data are discussed in the light of the results obtained by previous workers.We propose the following history of the STLFZ kinematics during the Mesozoic. At the time of collision, a  NNE orientated Tan–Lu margin probably connected two margins located north of the Dabie and Sulu collision belts. During the Middle–Late Triassic, the SCB has been obliquely subducted below the NCB along this margin which has acted as a compressional transfer zone between the Dabie and Sulu continental subduction zones. The STLFZ has been initiated during the Early Jurassic and has acted as a sinistral transform fault during the Jurassic, following which the NCB/SCB collision stopped. A  NW-trending extension related to metamorphic domes was active during the basal Early Cretaceous ( 135–130 Ma); it has been followed by a NW–SE compression and a NE–SW tension during the middle–late Early Cretaceous ( 127 to  105 Ma, possibly  95 Ma); at that time the TLFZ was a sinistral transcurrent fault within the eastern part of the Asian continent. During the Late Cretaceous–Palaeocene, the STLFZ was a normal fault zone under a WNW–ESE tension.  相似文献   

5.
The Xainza-Dinggye rift is one of several north-south trending rifts in central and southern Tibet created by Cenozoic east-west extension during Indo-Asian convergence. The southern part of the rift cuts through the Tethyan and High Himalayas. In the Tethyan Himalaya, this rift consists of an early domal structure and a late normal fault developed during the progressive deformation. The dome is cored by leucogranitic plutons that intruded during extension. Muscovite 40Ar/39Ar ages of the mylonitic leucogranite indicate that extension in the Tethyan Himalaya began at 8 Ma or before. In the High Himalaya, the rift is controlled by a normal fault dipping to the southeast. This fault has a structural constitution similar to a detachment fault. Its lower block is made up of mylonitic High Himalayan gneiss, intruded by early mylonitic leucogranite sills and late less-deformed biotite-bearing leucogranite dikes. Mica 40Ar/39Ar ages of these leucogranites and the retrograded metamorphosed gneiss of the lower block range from 13 to 10 Ma. In the study area, the south Tibetan detachment system (STDS) is a ductile shear zone composed of mylonitic leucogranite that is intruded by less-deformed leucogranite and overlain by low grade metamorphic rocks. Mica 40Ar/39Ar ages of leucogranites in the shear zone and schist from the detachment hanging wall indicate a protracted deformation history of the STDS from 19 to 13 Ma. The Xainza-Dinggye rift is younger than the STDS because it offsets the STDS; this north-south trending rift belongs to a different tectonic system from the east-west striking STDS, and may be caused by geological process related to India–Asia convergence. This temporal and spatial relationship of the STDS to the rift may indicate an important change in tectonic regime at 13 Ma in the building of the plateau.  相似文献   

6.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

7.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

8.
The small granite plutons occurring at the contact of the Singhbhum-Orissa Iron Ore craton (IOC) to the north and the Eastern Ghat Granulite Belt (EGGB) to the south in eastern Indian shield are characterised by the presence of enclaves of the granulites of EGGB and the greenschist facies rocks of IOC. These granites also bear the imprints of later cataclastic deformation which is present at the contact of the IOC and the EGGB. In situ Pb-Pb zircon dating of these granites gives minimum age of their formation 2.80 Ga. A whole-rock three point Rb-Sr isochron age of this rock is found to be 2.90 Ga. Therefore, the true age of formation of these granites will be around 2.90–2.80 Ga. These granitic rocks also contain xenocrystic zircon components of 3.50 Ga and show a later metasomatic or metamorphic effect 2.48 Ga obtained from the analyses on overgrowths developed on 2.80 Ga old zircon cores. The presence of granulitic enclaves within these contact zone granite indicates that the granulite facies metamorphism of the EGGB is 2.80 Ga or still older in age. The cataclastic deformations observed at the contact zone of the two adjacent cratons is definitely younger than 2.80 Ga and possibly related to 2.48 Ga event observed from the overgrowths. As 2.80 Ga granite plutons of small dimensions are also observed at the western margin of the IOC; it can be concluded that a geologic event occurred 2.80 Ga over the IOC when small granite bodies evolved at the marginal part of this craton after its stabilisation at 3.09 Ga.  相似文献   

9.
In Pennsylvania, the Taconic Orogeny lasted from 461 to 443 Ma as Cambro-Ordovician slope deposits were deformed into mountains edging the Laurentian craton at the same time that materials from an adjacent deep-water basin were being transported 50 –70 km across a carbonate platform into foreland basins. This paper focuses on shelf-edge hinterland features, mostly the Martic Zone as a folded, stack of imbricate thrust sheets of slope materials that corresponds to Vermont's Taconic Mountains and Southern Quebec's zone of Taconic allochthons. Work of the last century is summarized, corrected, and combined with a new 450 Ma radiometric date and fluid inclusion data from the Pequea Mine within the Martic Zone. These and abundant new graptolite and conodont dates in the foreland paint a revised Pennsylvania picture differing from the northern Taconic areas. Differences are: (1) transport of very large allochthonous masses of deep-water material, the Dauphin Formation, far across the carbonate platform, and (2) deformation migrating progressively across that platform during a 15 –20 m.y. period, incorporating it and its foreland cover into alpine-scale, recumbent folds and thrusts. The scenario has many analogies to Italy's modern Apennine Mountains minus the Latian volcanics.  相似文献   

10.
Wide-angle seismic and gravity data across the Narmada-Son lineament (NSL) in central India are analyzed to determine crustal structure, velocity inhomogeneities and hence constrain the tectonics of the lineament. We present the 2-D crustal velocity structure from deep wide-angle reflection data by using a ray-trace inverse approach. The main result of the study is the delineation of fault-bounded horst raised to a subsurface depth (1.5 km) and the Moho upwarp beneath the NSL. The crust below the basement consists of three layers with velocities of 6.45–6.7, 6.2–6.5 and 6.7–6.95 km/s and interface depths of about 5.5–8.7, 14–17 and 18–23 km along the profile. The low-velocity (6.2–6.5 km/s) layer goes up to a depth of 5 km and becomes the thickest part (13 km), while the overlying high-velocity (6.45–6.7 km/s) layer becomes the thinnest (3 km) and upper boundary lies at a depth of 1.5 km beneath the NSL. The overall uncertainties of various velocity and boundary nodes are of the order of ±0.12 km/s and ±1.40 km, respectively. The up-lifted crustal block and the up-warping Moho beneath the NSL indicate that the north and south faults bounding the NSL are deeply penetrated through which mafic materials from upper mantle have been intruded into the upper crust. Gravity modeling was also undertaken to assess the seismically derived crustal features and to fill the seismic data gap. The lateral and vertical heterogeneous nature of the structure and velocity inhomogeneities in the crust cause instability to the crustal blocks and played an important role in reactivation of the Narmada south fault during the 1997 Jabalpur earthquake.  相似文献   

11.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

12.
O. Nebel  K. Mezger   《Precambrian Research》2008,164(3-4):227-232
Dating low temperature events such as magmatic cooling or (hydro-)thermal surges in Archean and Proterozoic terranes is crucial in defining cratonal thermal stabilization after episodic continental growth during the Archean and Early Proterozoic. Rubidium–Sr chronology is potentially a powerful tool in this regard because of its low closure temperature, i.e., <400 °C in most minerals, but has until now been hampered by its relatively low precision compared to high-temperature chronometers. Consequently, Rb–Sr age investigations have so far failed to provide high-precision age constraints on the cooling of rocks older than 2 Ga. Here, it is demonstrated that internal Rb–Sr microchrons can yield important, high-precision age constraints on the cooling history of Archean intrusions. After careful mineral selection and chemical treatment, a Rb–Sr age of 2543.0 ± 4.4 Ma was obtained from the Archean Great Dyke, Zimbabwe Craton, in contrast to the intrusion age of 2575.8 ± 1 Ma, yielding an ambient average cooling of 5 ± 2 °C/Ma. The non-disturbed magmatic Rb–Sr cooling age of the Great Dyke marks the final stage of Zimbabwe craton stabilization and that the greater craton area did not experience any intensive later reheating event during metamorphic or tectonic events.  相似文献   

13.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

14.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

15.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

16.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

17.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

18.
Quaternary glacial history of the Central Karakoram   总被引:3,自引:0,他引:3  
The Quaternary glacial history of the world's highest mountains, the Central Karakoram, is examined for the first time using geomorphic mapping of landforms and sediments, and 10Be terrestrial cosmogenic nuclide surface exposure dating of boulders on the moraines and glacially eroded surfaces. Four glacial stages are defined: the Bunthang glacial stage (>0.7 Ma); the Skardu glacial stage (marine Oxygen Isotope Stage [MIS] 6 or older); the Mungo glacial stage (MIS 2); and the Askole glacial stage (Holocene). Glaciers advanced several times during each glacial stage. These advances are not well defined for the oldest glacial stages, but during the Mungo and Askole glacial stages glacial advances likely occurred at 16, 11–13, 5 and 0.8 ka. The extent of glaciation in this region became increasingly more restricted over time. In the Braldu and Shigar valleys, glaciers advanced >150 km during the Bunthang and Skardu glacial stages, while glaciers advanced >80 km beyond their present positions during the Mungo glacial stage. In contrast, glaciers advanced a few kilometers from present ice margins during the Askole glacial stage. Glacier in this region likely respond in a complex fashion to the same forcing that causes changes in Northern Hemisphere oceans and ice sheets, teleconnected via the mid-latitude westerlies, and also to changes in monsoonal intensity.  相似文献   

19.
Numerous cirques of the Lofoten–Vesterålen archipelago in northern Norway have distinct moraine sequences that previously have been assigned to the Allerød-Younger Dryas ( 13,400 to 11,700 yr BP) interval, constraining the regional distribution of the equilibrium-line altitude (ELA) of cirque and valley glaciers. Here we present evidence from a once glacier-fed lake on southern Andøya that contests this view. Analyses of radiocarbon dated lacustrine sediments including rock magnetic parameters, grain size, organic matter, dry bulk density and visual interpretation suggest that no glacier was present in the low-lying cirque during the Younger Dryas-Allerød. The initiation of the glacial retreat commenced with the onset of the Bølling warming ( 14,700 yr BP) and was completed by the onset of Allerød Interstade ( 13,400 yr BP). The reconstructed glacier stages of the investigated cirque coincide with a cool and dry period from  17,500 to 14,700 yr BP and a somewhat larger Last Glacial Maximum (LGM) advance possibly occurring between  21,050 and 19,100 yr BP.  相似文献   

20.
Knowledge of the Cretaceous–Tertiary history of upper crustal shortening and magmatism in Tibet is fundamental to placing constraints on when and how the Tibetan plateau formed. In the Lhasa terrane of southern Tibet, the widely exposed angular unconformity beneath uppermost Cretaceous–lower Tertiary volcanic-bearing strata of the Linzizong Formation provides an excellent geologic and time marker to distinguish between deformation that occurred before vs. during the Indo-Asian collision. In the Linzhou area, located  30 km north of the city of Lhasa, a > 3-km-thick section of the Linzizong Formation lies unconformably on Cretaceous and older rocks that were shortened by both northward- and southward-verging structures during the Late Cretaceous. The Linzizong Formation dips northward in the footwall of a north-dipping thrust system that involves Triassic–Jurassic strata and a granite intrusion in the hanging wall. U–Pb zircon geochronologic studies show that the Linzizong Formation ranges in age from 69 Ma to at least 47 Ma and that the hanging wall granite intrusion crystallized at  52 Ma, coeval with dike emplacement into footwall Cretaceous strata. 40Ar/39Ar thermochronologic studies suggest slow cooling of the granite between 49 and 42 Ma, followed by an episode of accelerated cooling to upper crustal levels beginning at  42 Ma. The onset of rapid cooling was coeval with the cessation of voluminous arc magmatism in southern Tibet and is interpreted be a consequence of either (1) Tertiary thrusting in this region or (2) regional rock uplift and erosion following removal of overthickened Gangdese arc lower crust and upper mantle or break-off of the Neo-Tethyan oceanic slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号