首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial–temporal analyses of rainfall have been studied by using 107 (1901–2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.  相似文献   

2.
3.
基于LZU0025高分辨率格点数据集,对1951—2012年中国区域气温和降水量的时空分布特征,以及气候变化趋势进行了初步分析。结果表明:中国的年平均气温自1980年开始显著增暖,年降水量在1960年出现由湿润到干燥的突变。中国的整体降水量变化趋势不如气温的变化趋势具有一致性。中国年平均气温增温趋势为0.26℃/(10a),局部的最大增温趋势超过0.6℃/(10a);中国年降水量减少趋势为6.7 mm/(10a),局部地区的降水减少趋势超过了30 mm/(10a),而有些地区的降水增加趋势却可达30 mm/(10a)。大兴安岭—黄土高原西北缘—黄河长江上游以北—冈底斯山脉东部为大致的平均400 mm等降水量线,可用于划分中国的半干旱与半湿润区。1951—2010年中国400 mm等降水量线位置的年代际变化情况复杂,但总体呈现不断南移的趋势,表明中国干旱、半干旱区面积在不断扩大。  相似文献   

4.

This study focuses on changes in the maximum and minimum temperature over the Subansiri River basin for different climate change scenarios. For the study, dataset from Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) (i.e., coupled model intercomparison project phase five (CMIP5) dataset with representative concentration pathway (RCP) scenarios) were utilized. Long-term (2011–2100) maximum temperature (T max) and minimum temperature (Tmin) time series were generated using the statistical downscaling technique for low emission scenario (RCP2.6), moderate emission scenario (RCP6.0), and extreme emission scenario (RCP8.5). Trends and change of magnitude in T max, T min, and diurnal temperature range (DTR) were analyzed for different interdecadal time scales (2011–2100, 2011–2040, 2041–2070, 2070–2100) using Mann-Kendall non-parametric test and Sen’s slope estimator, respectively. The temperature data series for the observed duration (1981–2000) has been found to show increasing trends in T max and T min at both annual and monthly scale. Trend analysis of downscaled temperature for the period 2011–2100 shows increase in annual maximum temperature and annual minimum temperature for all the selected RCP scenarios; however, on the monthly scale, T max and T min have been seen to have decreasing trends in some months.

  相似文献   

5.
Precipitation analysis over southwest Iran: trends and projections   总被引:1,自引:1,他引:0  
Analysis of trends and projection of precipitation are of significance for the future development and management of water resource in southwest Iran. This research has been divided into two parts. The first part consists of an analysis of the precipitation over 50 stations in the study region for the period 1950–2007. The trends in this parameter were detected by linear regression and significance was tested by t test. Mann–Kendall rank test was also employed to confirm the results. The second part of the research involved future projection of precipitation based on four models. The models used were Centre National de Recherches Meteorologiques (CNRM), European Center Hamburg Model (ECHAM), Model for Interdisciplinary Research on Climate (MIROCH) and United Kingdom Meteorological Office (UKMOC). Precipitation projections were done under B1 and A1B emissions scenarios. The results of precipitation series indicated that most stations showed insignificant trend in annual and seasonal series. The highest numbers of stations with significant trends occurred in winter while no significant trends were detected by statistical tests in summer precipitation. No decreasing significant trends were detected by statistical tests in annual and seasonal precipitation series. The result of projections showed that precipitation may decrease according to majority of the models under both scenarios but the decrease may not be large, except according to MIROCH model. Autumn precipitation may increase with higher rates than other seasons at the end of this century.  相似文献   

6.
7.
Summary An attempt is made to use the ratio of precipitation to potential evapotranspiration to qualify earlier climatic classifications of Nigeria for proper ecological zonation.Results show that in the pure forest belt located south of latitude 7° N the value is greater than 0.75, while in the middle belt (7–10° N) belonging to the wooded savanna and in areas further north gradually approaching steppe-type vegetation of pure Sahel, the values of below 0.40.Modulations of values (hence the eco-zones) appear to be responses to variable precipitation, especially in drought years. It is suggested that this notwithstanding, irreversible trends in land-surface degradation are mainly due to uncontrolled human interference in relation to large-scale agriculture in areas where is less than 0.40 in the Sudan-Shael belt of Nigeria. This needs to be re-appraised, if this desertification trend is to be checked
Zusammenfassung In vorliegender Arbeit wird der Versuch unternommen, mittels des Quotienten von Niederschlag und potentieller Evapotranspiration frühere klimatische Klassifikationen der ökologischen Zonen von Nigeria genauer zu bestimmen.Die Ergebnisse zeigen, daß im reinen Waldgürtel südlich des 7. Breitengrades-Werte über 0.75 auftreten, während im mittleren (7–10° N), zur Waldsavanne gehörigen Gürtel, und in weiter nördlich gelegenen Gebieten, die zunehmend die steppenartige Vegetation der reinen Sahelzone aufweisen,-Werte unter 0.40 auftreten.Die Schwankungen der-Werte (forthin Ökozonen) scheinen die Reaktion auf unterschiedlichen Niederschlag besonders in Dürrejahren zu sein. Ungeachtet dessen ist die Annahme naheliegend, daß die irreversiblen Trends der Verschlechterung der Landoberflächen vor allem unkontrollierten menschlichen Eingriffen in Zusammenhang mit großflächigem Landbau in Gebieten des Sudan-Sahel-Gürtel Nigerias zuzuschreiben sind, wo weniger als 0.40 beträgt. Diesem Aspekt muß eine neuerliche Untersuchung gewidmet werden, um diesen Trend zur Desertifikation zu überprüfen.


With 5 Figures  相似文献   

8.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

9.
10.
11.
We study the influence of station network density on the distributions and trends in indices of area-average daily precipitation and temperature in the E-OBS high resolution gridded dataset of daily climate over Europe, which was produced with the primary purpose of Regional Climate Model evaluation. Area averages can only be determined with reasonable accuracy from a sufficiently large number of stations within a grid-box. However, the station network on which E-OBS is based comprises only 2,316 stations, spread unevenly across approximately 18,000 0.22° grid-boxes. Consequently, grid-box data in E-OBS are derived through interpolation of stations up to 500 km distant, with the distance of stations that contribute significantly to any grid-box value increasing in areas with lower station density. Since more dispersed stations have less shared variance, the resultant interpolated values are likely to be over-smoothed, and extreme daily values even more so. We perform an experiment over five E-OBS grid boxes for precipitation and temperature that have a sufficiently dense local station network to enable a reasonable estimate of the area-average. We then create a series of randomly selected station sub-networks ranging in size from four to all stations within the E-OBS interpolation search radii. For each sub-network realisation, we estimate the grid-box average applying the same interpolation methodology as used for E-OBS, and then evaluate the effect of network density on the distribution of daily values, as well as trends in extremes indices. The results show that when fewer stations have been used for the interpolation, both precipitation and temperature are over-smoothed, leading to a strong tendency for interpolated daily values to be reduced relative to the “true” area-average. The smoothing is greatest for higher percentiles, and therefore has a disproportionate effect on extremes and any derived extremes indices. For many regions of the E-OBS dataset, the station density is sufficiently low to expect this smoothing effect to be significant and this should be borne in mind by any users of the E-OBS dataset.  相似文献   

12.
Considered is the precipitation dynamics in the areas adjoining the Noril’sk Mining and Smelting Complex. An attempt is made to establish linkage between the trends in spatiotemporal precipitation dynamics and the atmospheric aerosol pollution.  相似文献   

13.
Inter-annual variability and trends of annual/seasonal precipitation totals in Ghana are analyzed considering different gridded observational (gauge- and/or satellite-based) and reanalysis products. A quality-controlled dataset formed by fourteen gauges from the Ghana Meteorological Agency (GMet) is used as reference for the period 1961–2010. Firstly, a good agreement is found between GMet and all the observational products in terms of variability, with better results for the gauge-based products—correlations in the range of 0.7–1.0 and nearly null biases—than for the satellite-gauge merged and satellite-derived products. In contrast, reanalyses exhibit a very poor performance, with correlations below 0.4 and large biases in most of the cases. Secondly, a Mann-Kendall trend analysis is carried out. In most cases, GMet data reveal the existence of predominant decreasing (increasing) trends for the first (second) half of the period of study, 1961–1985 (1986–2010). Again, observational products are shown to reproduce well the observed trends—with worst results for purely satellite-derived data—whereas reanalyses lead in general to unrealistic stronger than observed trends, with contradictory results (opposite signs for different reanalyses) in some cases. Similar inconsistencies are also found when analyzing trends of extreme precipitation indicators. Therefore, this study provides a warning concerning the use of reanalysis data as pseudo-observations in Ghana.  相似文献   

14.
基于TIGGE资料的地面气温和降水的多模式集成预报   总被引:6,自引:3,他引:6       下载免费PDF全文
利用TIGGE资料集下中国气象局(CMA)、欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)、美国国家环境预报中心(NCEP)和英国气象局(UKMO)5个中心集合预报结果,对多模式集成预报方法进行讨论。结果表明,多模式集成方法的预报效果优于单个中心的预报,但对于不同预报要素多模式集成方法的适用性存在差异。滑动训练期超级集合(R-SUP)对北半球地面气温的改进效果最优,但此方法对降水场的改进效果并不理想。在北半球中低纬24 h累积降水的回报试验中,消除偏差(BREM)的结果优于单个中心的预报,且此方法预报结果稳定。进一步利用滑动训练期消除偏差(R-BREM)集合平均对2008年1月中国南方极端雨雪冰冻过程进行多模式集成预报试验,结果表明,在固定误差范围内,R-BREM将中国南方大部分地区的地面气温预报时效由最优数值预报中心的96 h延长至192 h,且除个别时效外,小雨、中雨的TS评分得到明显提高。  相似文献   

15.
基于飞机观测资料的降水粒子反射率因子阈值分析   总被引:2,自引:0,他引:2       下载免费PDF全文
降水粒子对云的生消和演化有非常重要的影响。毫米波雷达适合观测非降水云和弱降水云。利用毫米波雷达数据判断云内降水粒子生成与否有很高的实用价值。本文利用飞机观测的云滴谱数据计算云的反射率因子。将其与雷达探测值进行比对,发现两者有较好的一致性。因此利用滴谱计算的降水粒子反射率因子阈值可以作为雷达判断降水粒子生成的指标。通过分析滴谱计算云滴和降水粒子的反射率因子的概率密度函数可以得到用于区分云滴和降水粒子的反射率因子阈值。通常,云滴的反射率因子不超过-5dBz,降水粒子的反射率因子高于-20dBz,-15~-12dBz可作为判断降水粒子出现的阈值。  相似文献   

16.
This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23?years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates that the proposed weighting factors reflect well all five attributes and the performances of weighted averaged references are better than that of the best single model. This study also found that the improvement of WARs’ performance is due to the reliability (accuracy) of RCMs rather than the ensemble size.  相似文献   

17.
18.
最近发布的新一代全球再分析资料集ERA5,提供了全球小时降水再分析值,为全球小时降水研究提供又一个数据参考。然而,目前针对ERA5小时降水频率的评估工作还较为有限。本研究采用多套全球卫星观测小时降水对ERA5小时降水的频率进行了评估。对比分析发现:尽管ERA5总降水量与卫星资料出现较好的一致性,但ERA5的小时降水频率约为卫星资料的2~3倍,呈现系统性偏高。进一步分析表明,这主要是由于ERA5大大高估了中、低强度降水事件的数量。其中,ERA5对弱降水频率的高估尤为明显,平均可达卫星降水频率的6倍;此外,ERA5对海洋降水频率的高估程度也大于陆地。ERA5小时降水频率的系统性高估问题对相关研究的潜在影响,尚在进一步评估中。  相似文献   

19.
Vast areas of rangelands across the world are grazed with increasing intensity, but interactions between livestock production, biodiversity and other ecosystem services are poorly studied. This study explicitly determines trade-offs and synergies between ecosystem services and livestock grazing intensity on rangelands. Grazing intensity and its effects on forage utilization by livestock, carbon sequestration, erosion prevention and biodiversity are quantified and mapped, using global datasets and models. Results show that on average 4% of the biomass produced annually is consumed by livestock. On average, erosion prevention is 10% lower in areas with a high grazing intensity compared to areas with a low grazing intensity, whereas carbon emissions are more than four times higher under high grazing intensity compared to low grazing intensity. Rangelands with the highest grazing intensity are located in the Sahel, Pakistan, West India, Middle East, North Africa and parts of Brazil. These high grazing intensities result in carbon emissions, low biodiversity values, low capacity for erosion prevention and unsustainable forage utilization. Although the applied models simplify the processes of ecosystem service supply, our study provides a global overview of the consequences of grazing for biodiversity and ecosystem services. The expected increasing future demand for livestock products likely increase pressures on rangelands. Global-scale models can help to identify targets and target areas for international policies aiming at sustainable future use of these rangelands.  相似文献   

20.
To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851–2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10–30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号