首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Spatial patterns of daily precipitation indices and their temporal trends over Iran are investigated using the APHRODITE gridded daily precipitation dataset for the period 1961–2004. The performance and limitations of the gridded dataset are checked against observations at ten rain-gauge stations that are representative of different climates in Iran. Results suggest that the spatial patterns of the indices reflect the role of orography and sea neighborhoods in differentiating central-southern arid and semi-arid regions from northern and western mountainous humid areas. It is also found that western Iran is impacted by the most extreme daily precipitation events occurring in the country, though the number of rainy days has its maximum in the Caspian Sea region. The time series of precipitation indices is checked for long-term trends using the least squares method and Mann-Kendall test. The maximum daily precipitation per year shows upward trends in most of Iran, though being statistically significant only in western regions. In the same regions, upward trends are also observed in the number of wet days and in the accumulated precipitation and intensity during wet days. Conversely, the contribution of precipitation events below the 75th percentile to the annual total precipitation is decreasing with time, suggesting that extreme events are responsible for the upward trend observed in the total annual precipitation and in the other indices. This tendency towards more severe/extreme precipitation events, if confirmed by other datasets and further analyses with longer records, would require the implementation of adequate water resources management plans in western Iran aimed at mitigating the increasing risk of intense precipitation and associated flash floods and soil erosion.  相似文献   

2.
3.
Summary Spatial and temporal patterns of trends in the diurnal temperature ranges (DTRs) of the 70 stations and the role of maximum and minimum temperatures on the year-to-year variability and the long-term trends of the DTRs in Turkey have been investigated for the period 1929–1999. The principal results of the study are as follows:(i) The daytime maximum temperatures have shown weak warming and cooling in comparison with significant warming of the night-time minimum temperatures in many regions of Turkey and in most seasons. (ii) The DTRs have significantly decreased at most of the urbanised and rapidly urbanising stations throughout the seasons except partly in winter, without showing an apparent north/south (west–east) and land/sea gradient. (iii) Annual and seasonal DTRs of some stations have shown significant increasing trends. Nevertheless, the spatial distribution of significant increasing trends in the DTR series is geographically incoherent across the country in all seasons and annually, as compared with significantly decreased DTRs. (iv) Autumn and summer DTRs have decreased generally at a higher rate than in winter and spring. (v) Changes in the temperature regime of Turkey towards the more temperate and/or warmer climate conditions are most strongly related with the significant night-time warming in spring and summer. (vi) Magnitudes and signs of correlation coefficients and correlation patterns between the DTRs and the maximum and minimum temperatures have revealed that there is an opposite physical control mechanism on the year-to-year variability and the long-term variations and trends in the DTRs, particularly for the annual, spring and summer series. (vii) Significant increases of the night-time temperatures have most likely led to strong decreasing trends in the DTRs of most stations during the spring and summer seasons and annually and of some stations during winter and autumn. (viii) The asymmetric trends and the symmetric, but with different magnitude, trends in the maximum and minimum temperatures resulted in a significant decrease in the DTRs of many stations and are a considerable signal of ongoing changes in the climatic variability of Turkey.  相似文献   

4.
5.
Theoretical and Applied Climatology - The purpose of this study is to assess spatial and temporal changes in extreme precipitation events from 1983 to 2017 over different climatic regions of...  相似文献   

6.
Spatial autocorrelation analysis of extreme precipitation in Iran   总被引:2,自引:0,他引:2  
Spatial variations in extreme precipitation events make hydrological, climatological, social, environmental and agricultural effects on a country. This study presents the spatiotemporal autocorrelation analysis of extreme precipitation events over Iran using gridded data on daily precipitation for the period 1961–2010. The 95th percentile is considered as extreme precipitation factor. The spatial autocorrelation of extreme precipitation is examined by three commonly used spatial autocorrelation statistics, the G i statistic index, Moran’s I global index, and Local Moran’s I (LISA) index, at the 95 and 99% significant confidence level. The results showed a strong significant spatial autocorrelation for extreme precipitation events with the highest Moran’s I value in January. The positive significant autocorrelation of extreme precipitation is observed over the southern parts of the Caspian Sea and Zagros Mountains ranges, while the negative significant autocorrelation is observed over the central and eastern parts of country. In spring and summer the positive autocorrelation cores displace from the Zagros Mountains ranges to the northwestern and southeastern parts.  相似文献   

7.
Jiao  Yufei  Liu  Jia  Li  Chuanzhe  Zhang  Xiaojiao  Yu  Fuliang  Cui  Yingjie 《Theoretical and Applied Climatology》2022,147(1-2):627-650
Theoretical and Applied Climatology - According to the daily maximum and minimum temperature and the precipitation at 40 meteorological stations in the Daqing River Basin of China during...  相似文献   

8.
利用柴达木盆地11个国家气象站(2017年3月—2018年2月)及28个区域气象站(2017年6—8月)月降水量资料,运用线性回归订正法和比值订正法推算柴达木盆地的年降水量,进一步分析柴达木盆地降水量季节变化及空间分布特征。结果表明:(1)柴达木盆地降水量年内分配极不均匀,呈单峰性,峰值出现在7月,5—9月(汛期)降水量占全年的87.4%。季节差异非常明显,降水主要集中在夏季;(2)年降水量空间分布特征:柴达木盆地年降水量各地差异极为显著,降水量整体表现为从东向西逐渐减少。最大值出现在天峻,最小值出现在冷湖。用2种方法推算的年降水量最大值出现在柴达木盆地东北部祁连山南麓的木里镇,其次在格尔木市南部出现了两个相对的大值中心,中间区域(93°~97°E)由四周山区向盆地中心逐渐减少的形势表现得更加清晰。夏季降水量的空间分布与年降水量的空间分布完全一致。(3)国家气象站模型中降水量分布只受经度和海拔高度的影响,而线性回归法和比值订正法模型中降水量的分布不仅受经度和海拔高度的影响,还受纬度的影响,三者的贡献率由大到小的排序是经度海拔高度纬度。  相似文献   

9.
10.
11.
Mean annual precipitation variability at decadal time scale over a southern Italy area (Calabria) was investigated to quantify the spatial and temporal patterns. A multivariate approach has been applied to analyse spatial?Ctemporal (1921?C2000) data of annual precipitation. A nested isotropic linear model of coregionalization was fitted to the experimental variograms including three basic structures: a nugget effect, an exponential model and a spherical model. The correlation structure between the decades was analysed by applying principal component analysis at each spatial scale, and specific factors at each characteristic scale were cokriged and mapped. Two components were identified: the first is mainly linked to local factors, which could be identified by the orographic characteristics of the region, while the long range component could be related to large-scale factors, like for example the processes of the global atmospheric circulation. In addition, in order to obtain a better insight into the pattern of relatively dry or wet zones, a standardized relative difference was calculated. The results showed that the annual precipitation decreased during the period 1921?C2000 and the spatial distribution changed with an increase of dry areas.  相似文献   

12.
利用石家庄地区5个代表站1961-2014年的逐日降水资料,采用多种统计分析方法,分析了石家庄地区降水量的时空变化特征,结果表明石家庄地区年降水量从20世纪70年代开始下降,80年代达到最低,90年代有所增加,但也没有明显的上升趋势,21世纪初又开始下降.20世纪70年代降水量的减少春季和秋季贡献最大,80年代降水量的减少和90年代降水量的增加主要是夏季的贡献.石家庄地区年降水量起伏较大,1963年降水量最多,为1038.4 mm,2014年最少,仅为276.2 mm.近54年石家庄年降水量在波动中呈现下降趋势,线性趋势为-11.0 mm/(10 a),但下降趋势并不明显.石家庄北部年降水量呈上升趋势,市区及东部、南部和西部年降水量均呈下降趋势,变化趋势均不明显.近54年,石家庄春季降水量呈上升趋势,线性趋势为0.9 mm/(10 a),夏季、秋季和冬季降水量均呈下降趋势,线性趋势分别为-11.9,-1.1和-0.3 mm/(10 a),上升或下降趋势均不明显.夏季降水减少是导致石家庄年降水减少的主要原因.石家庄四季降水量变化趋势的空间分布具有明显的季节特征和区域特征.石家庄四季降水量均存在显著周期变化.  相似文献   

13.
The present study focuses on spatial patterns of diurnal variability in winter precipitation across the Indian subcontinent. Hourly precipitation data during the months of January and February from 1980 to 2002 were procured for 80 stations spread across the subcontinent. The methodology consisted of calculation of the first harmonics by harmonic analysis for three variables that included frequency, total amount, and intensity of precipitation events. There were substantial variations in the strength of the diurnal cycle prevailing over the subcontinent, with most of the peninsular region and eastern part of the northern Gangetic Plain showing relatively stronger diurnal cycles. The variance explained by the first harmonic was significant at the 90% confidence level for larger parts of the peninsular region and northern plains. The weakest patterns were observed in the interior of the continent over central India. The times of maximum for hourly frequency, total amount, and intensity of precipitation were predominantly during the latter half of the 24–hour period, during late evening hours to just before sunrise hours. This was due to the enhanced warm front lifting during the late night to early morning hours as a result of nighttime inversions in the warm sector. Further, along the foothills of the Himalayas, the times of maximum were observed during predawn hours just before sunrise, caused by the downslope movement of katabatic winds and their convergence with the cyclonic storms in the low-lying areas, leading to enhanced precipitation. Along the west coast, the times of maxima were also concentrated in the midnight to early-morning hours due to the convergence of inland moving seas breeze fronts with the northeast trades.  相似文献   

14.
基于EOF的江西省秋季降水时空分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
基于1980—2020年秋季江西省83个气象观测站逐月降水数据,利用EOF方法分析了该地区秋季降水的时空分布特征。结果表明,江西省秋季降水场主要有4种类型,分别为全区型、北湿(干)南干(湿)型、西湿(干)东干(湿)型、中心湿(干)南北干(湿)型,累计贡献率为86.7%。1980—2020年,全区型和中心湿(干)南北干(湿)型降水呈增加趋势,而北湿(干)南干(湿)型和西湿(干)东干(湿)型降水呈下降趋势。其中全区型降水分布的年份占比75.6%,主要受大尺度大气环流的影响。北湿(干)南干(湿)型降水分布的年份占比17.1%,这是由于赣北地区受地形抬升作用,降水较多,而中南部在背风坡,降水较少,同时秋季赣北处于副热带高压边缘,且受到台风外围的影响,易发生降水,使得南北降水呈反相位变化。  相似文献   

15.
Summary The main characteristics of the spatial and temporal variability of winter and summer precipitation observed at 30 stations in Serbia and Montenegro were analysed for the period 1951–2000. The rainfall series were examined spatially by means of Empirical Orthogonal Functions (EOF) and temporally by means of the Mann-Kendall test and spectral analysis. The Alexandersson test was used to detect the inhomogeneity of the data set.The EOF analysis gave three winter and summer dominant modes of variations, which explained 89.7% and 70.4% of the variance, respectively. The time series associated with the first pattern showed a decreasing trend in winter precipitation. The spectral analysis showed a 16-year oscillation for the dominant winter pattern, around a 3-year oscillation for the dominant summer pattern, and a quasi-cycle of 2.5 years for the winter third pattern.  相似文献   

16.
利用1961—2021年汛期(4—6月)江西省83个气象站点的逐日降水序列资料,计算了江西省汛期候尺度降水集中度(PCD)和集中期(PCP),运用合成分析、趋势分析方法分析了江西省汛期降水的不均匀特征。结果表明:江西省PCD的变化区间为0.12—0.43,PCP的变化区间为5月第1候至6月第5候,说明江西省汛期降水较为均匀,但近年来降水有更集中的趋势。在空间分布上,赣南南部和赣北东部降水较为集中,降水集中期自南向北逐渐推迟,主要出现在6月中下旬。从变化趋势来看,PCP在赣南南部和赣中东部为偏早趋势,赣中北部和赣北地区有偏晚的趋势,PCD的趋势并不明显。多雨年PCD大值区主要在赣中地区,最大降水出现在6月;少雨年PCD大值区在赣北中南部和赣南东部地区,最大降水出现在5月。  相似文献   

17.
Reference crop evapotranspiration (ET0) is one of the most important climatic parameters which plays a key role in estimating crop water demand and scheduling irrigation. Under global warming and climate change conditions, it is needed to survey the trend of ET0 in Iran. In this study, ET0 values were determined based on FAO-56 Penman-Monteith equation over 32 synoptic meteorological stations during 1960–2005; and analyzed spatially and temporally in monthly, seasonal and annual time scales. After removing the significant lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann–Kendall (MK) test was used to detect the trends. The slope of the changes was determined by Sen’s slope estimator. In order to facilitate in trend analysis, the 10 moving average low pass filter were also applied on the normalized annual ET0 time series. Annual ET0 time series and filtered ones were then classified by hierarchical clustering in three clusters and then mapped in order to show the patterns of different clusters. Results showed that the significant decreasing trends were more considerable than increasing ones. Among surveyed stations, and on an annual time scale, the highest and lowest annual values of Sen’s slope estimator were observed in Tabas with (+) 72.14 mm per decade and Shahrud with (?) 62.22 mm per decade, respectively. Results also indicated that the clustered map based on normalized and filtered annual ET0 time series is in accordance with another map which showed spatial distribution of increasing, decreasing and non-significant trends of ET0 on annually time scale. Exploratory and visual analysis of smoothed time series showed increasing trend in recent years especially after 1980 and 1995. In brief, the upward trend of ET0 in recent years is a crucial issue with regard to the high cost of dam construction for agricultural aims in arid and semi-arid regions e.g. Iran.  相似文献   

18.
1961-2010 年东北地区降水事件时空均匀性研究   总被引:3,自引:0,他引:3  
利用1961-2010年东北三省和内蒙古四盟90个气象站逐日降水资料,分析了中国东北地区降水事件的气候特征及时空分布均匀性变化。结果表明:近50 a来,东北地区年降水量略有减少,但冬、春季降水量显著增加;考虑降水日数,冬、春季降水量增加主要是由于降水强度的增加,夏、秋季降水量减少主要是由于降水频次的减少。气候变暖的大背景下,虽然年降水量线性变化趋势并不明显,但是降水量年际间分布不均匀性增加,降水有向极端化发展的趋势,夏、秋季表现更为明显,各等级降水事件尤其是降雪在近20 a时间分布明显不均匀。降水量空间均匀性在1993年发生转折突变,突变后空间不均匀性增加,降水日数空间均匀性在1986年发生变率突变,突变后振荡加剧。降水事件时空不均匀性的增加一定程度上造成了东北地区旱涝事件发生可能性增加,不同地域旱涝事件同发现象加剧。  相似文献   

19.
Summary  This study shows that precipitation over the United States has two time scales of intraseasonal variation at about 37 days and 24 days. The results are derived from the application of a combination of statistical methods including principal component analysis (PCA), singular spectrum analysis (SSA), and multi-channel singular spectrum analysis (MSSA) to over 10 years of gridded daily precipitation records. Both oscillations have largest amplitude during the cold season. The 37-day oscillation has larger interannual variability. Intraseasonal oscillations are most significant in the Pacific Northwest. The 37-day oscillation has opposite phases between the western and eastern United States, while the 24-day oscillation has the same phases. These intraseasonal time scale precipitation variations may be associated with previously revealed mid-tropospheric circulation anomalies that oscillate at similar time scales. Received February 7, 2000 Revised October 20, 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号