首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
吴汤婷 《测绘学报》2020,49(1):134-134
地球重力场是地球的基本物理场,表征着地球物质空间分布、运动和变化,一直是大地测量学科的核心科学任务之一。随着卫星重力测量技术的飞速发展,21世纪初国际卫星重力探测计划,CHAMP、GRACE和GOCE先后成功实施,提供了大量高低卫星跟踪卫星、低低卫星跟踪卫星以及卫星重力梯度观测数据,为研究地球重力场精细结构和构建高精度全球重力场模型提供精确的长波信息。其中,基于卫星跟踪卫星观测值恢复高精度中长波重力场被各国学者广泛而深入地研究。在此背景下,本文研究由卫星跟踪卫星技术利用加速度法确定地球重力场模型的理论与方法。  相似文献   

2.
月球重力场的研究是实施探月工程的前提和基础,但由于目前探月技术不足以及月球特殊的物理环境,现有远月面重力场的精度难以保证探测器远月面登陆。而已在地球重力场研究方面得以成功实施的卫星跟踪卫星技术为解决这一难题提供了可能。本文通过模拟数据研究了卫星跟踪卫星视线加速度确定月球重力场方法的可行性和可靠性,计算了GRAIL卫星轨道参数下的月球全球重力异常,结果表明,卫星跟踪卫星视线加速度能较好地展现月球全球重力场的精细结构。  相似文献   

3.
广义卫星无线电定位报告原理及其应用价值   总被引:1,自引:1,他引:0  
谭述森 《测绘学报》2009,38(1):0-11
从全球定位及位置报告方案出发,提出基于卫星无线定位(RDSS)原理的快速三星高精度定位及位置报告原理、工程方案设计,分析了实时性、精度等主要指标,展现了该原理在全球快速救援以及动态用户跟踪的应用前景。采用Ru=RiS-RiSu矢量方程,完整表达了广义RDSS定位及位置报告原理,包含了以用户为测量及定位中心和用户外已知点为测量及定位中心的两种情况,将两种定位方式结合,就完成了位置报告。广义RDSS差分定位概念,将只具有单向伪距观测量的RNSS卫星纳入三星定位方程,实现了和GPS等卫星的兼容应用。为此,介绍了构成上述原理的CRDSS卫星的要求。  相似文献   

4.
国际重力卫星研究进展和我国将来卫星重力测量计划   总被引:12,自引:3,他引:9  
本文首先分别介绍了国际已经成功发射的专用地球重力测量卫星CHAMP、GRACE以及即将发射的GOCE、GRACE Follow-On和专用月球重力探测卫星GRAIL的研制机构、轨道参数、关键载荷、跟踪模式、测量原理、科学目标和技术特征;其次,阐述了当前相关学科对地球重力场测量精度的需求;最后,建议我国在将来实施的卫星重力测量计划中首选卫星跟踪卫星高低\低低模式,尽快开展轨道参数优化选取的定量系统研究论证和重力卫星系统的误差分析,依据匹配精度指标先期开展重力卫星各关键载荷的研制以及尽早启动卫星重力测量系统的虚拟仿真研究。  相似文献   

5.
基于北斗导航卫星的伪卫星技术在区域定位中的应用   总被引:13,自引:3,他引:13  
籍利平 《测绘科学》2002,27(4):53-56
借鉴差分 GPS导航定位的原理 ,阐述了在北斗导航卫星支持下的伪卫星技术 ,探讨了其定位原理、系统配置、技术设计、信号结构、天线安装和使用条件等。实现区域快速无源导航定位 ,需要至少四个伪卫星站提供的导航信号。伪卫星定位导航具有自主、隐蔽、经济等特性 ,在区域定位中应用前景良好。  相似文献   

6.
针对新一代卫星重力探测技术对地球重力场的频谱贡献问题,该文提出了一种基于GPS/水准数据获取多源卫星重力场模型频谱变化特征的方法。采用GPS/水准外符合检验,有效分析评估了多源卫星重力场模型在中国东、西部地区的精度水平。研究结果表明,以CHAMP、GRACE和GOCE卫星为代表的高-低卫星跟踪卫星、低-低卫星跟踪卫星和卫星重力梯度技术,对地球重力场的频谱贡献分别集中在600km以上的长波和中长波、300km以上的中波、200~350km之间的中短波部分。  相似文献   

7.
肖云 《测绘学报》2006,35(4):408-408
卫星跟踪卫星技术可以快速获取全球地球重力场中长波信息,不仅可以获取重力场静态信息,而且可以获取重力场的时变信息,已成为地球物理、大地测量、海洋、水文等学科研究、甚至减灾防灾等方面的一种高技术手段。本文研究基于卫星数据恢复地球重力场的理论和方法,重点在于求解地球重力场模型同时改善卫星初始轨道参数方法的研究。1.在阅读大量文献的基础上,给出了论文研究必需的基础理论知识,讨论恢复地球重力场的常用几种方法的基本原理,分析它们的优缺点,指出三种定轨方式的联系与区别。2.详细研究卫星跟踪卫星各种观测值的误差源,讨论削弱…  相似文献   

8.
卫星导航作为继互联网、移动通信之后发展最快的信息产业之一,受到世界各国的极大重视。卫星导航究竟能做什么?与国民经济及百姓生活有何关系?记者邀请中国全球定位系统技术应用协会副会长兼秘书长黄云康,清华大学GPS应用研究室主任过静珺教授、北斗星通卫星导航技术有限公司董事长周儒欣,畅谈卫星导航的应用前景,探讨了如何加快其产业化、民族化的进程。  相似文献   

9.
《黑龙江省卫星应用产业中长期发展规划(2013—2020年)》实施已近5年。黑龙江省卫星应用在技术、成果以及产业领域都有了较大的提升,为本省卫星行业重点工程实施、战略新兴产业重点领域突破创造了有利条件。然而,在产业聚集效应、行业快速发展、全省资源统筹及国家政策充分利用方面,仍有进一步的发展空间。本文以优化黑龙江省卫星应用产业发展为突破口,开展全省卫星导航、卫星遥感及卫星通信应用现状与产业发展情况的分析,剖析了卫星应用产业发展面临的主要问题,提出了具体的推进建议。  相似文献   

10.
微小卫星对地观测及其应用前景   总被引:1,自引:0,他引:1  
微小卫星技术是当今空间技术、电子技术、计算机技术、光学技术及遥感技术高度综合的结晶。目前,世界各国都在关注这项技术的发展与应用,以英国萨瑞大学空间技术中心为代表的国外对地观测民用卫星已为十几个国家进行小卫星及微小卫星研制及技术开发服务,我国有关部门已与萨瑞大学开展了有效的合作。从现有小卫星获取的数据资料质量及特征分析,其光谱及几何分辨率都较高,在全球灾害、环境监测、农业估产及资源调查等有广阔的应用前景。发展我国的微小卫星技术,将对我国航天遥感事业起到重要推动作用。  相似文献   

11.
卫星重力测量是当前探测全球一致、高精度和高分辨率地球重力场的高效技术手段,主要包括高低卫星跟踪卫星测量(satellite-to-satellite tracking in high-low mode, SST-hl)、低低卫星跟踪卫星测量(satelliteto-satellite tracking in low-low mode, SST-ll)和卫星重力梯度测量(satellite gravity gradiometry,SGG)。系统总结了利用卫星重力测量技术(包括SST-hl、SST-ll和SGG及多模式组合)反演地球重力场的主要方法,评述了利用挑战性小卫星有效载荷(challenging mini-satellite payload, CHAMP)、重力恢复与气候实验(gravity recovery and climate experiment, GRACE)/GRACE继任者(GRACE follow-on, GRACE-FO)和地球重力场和海洋环流探索器(gravity field and steady-state ocean circulation explorer...  相似文献   

12.
卫星重力与地球重力场   总被引:1,自引:1,他引:0  
卫星重力探测技术可获取全球均匀覆盖的地球重力场信号。以GRACE为代表的卫星跟踪卫星(satellite—to—satellite tracking,SST)计划为人类提供了前所未有丰富的中长波尺度的全球地球重力场信息。本文包含两部分研究内容:一是给出基于能量守恒原理的GRACESST重力观测方程,并采用此方法以实测GRACE观测数据求解得到120阶的GRACE地球重力场模型WHU—GM—05,并同国际上具有代表性的类似模型进行了分析比较;二是采用解析方法分析了SST观测系统中KBR、ACC、星载GPS等有效栽荷误差与获取地球重力场信号性能的响应,为我国SST设计和实施提供参考。  相似文献   

13.
Satellite gradiometry using a satellite pair   总被引:1,自引:1,他引:1  
The GRACE mission has substantiated the low–low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high–low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair, the simplest form of the combined observable, is mostly used for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. As an alternative observable, a linear combination of the gravitational gradient tensor components is proposed. Being a one-point function and having a direct relation with the field geometry (curvature of the field at the point) are two noteworthy achievements of the alternative formulation. In addition, using an observation quantity that is related to the second-instead of the first-order derivatives of the gravitational potential amplifies the high-frequency part of the signal. Since the transition from the first- to the second-order derivatives includes the application of a finite-differences scheme, the high-frequency part of the noise is also amplified. Nevertheless, due to the different spectral behaviour of signal and noise, in the end the second-order approach leads to improved gravitational field resolution. Mathematical formulae for the gradiometry approach, for both linear and higher-degree approximations, are derived. The proposed approach is implemented for recovery of the global gravitational field and the results are compared with those of LOS acceleration differences. Moreover, LOS acceleration difference residuals are calculated, which are at the level of a few tenths of mGal. Error analysis shows that the residuals of the estimated degree variances are less than 10–3. Furthermore, the gravity anomaly residuals are less than 2 mGal for most points on the Earth.  相似文献   

14.
本文对GFZ发布的GRACE EIGEN-GL04C重力场模型从球谐系数分析、误差阶方差分析两方面进行了精度评价。研究表明,相较于以往的重力场模型,EIGEN-GL04C重力场模型精度对120阶以下(未包含J2项)的地球中长波部分具有明显的改善。GRACE重力卫星测量已经成为获取地球重力场信息的重要手段。  相似文献   

15.
Simulation study of a follow-on gravity mission to GRACE   总被引:9,自引:3,他引:6  
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth’s time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to ~0.6 nm/s as compared to ~0.2 μm/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (~480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of ~250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.  相似文献   

16.
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ${<}50$ ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.  相似文献   

17.
The temporal changes of the Earth’s gravity field can be observed on a global scale with low–low satellite-to-satellite tracking (SST) missions. One of the largest restrictions of the quality of low–low SST gravity fields is temporal aliasing. This study investigates the design of optimal satellite orbits for temporal gravity retrieval regarding temporal aliasing. We present a method with which optimal altitudes for the orbit of a gravity satellite mission with the goal of temporal gravity retrieval can be identified. The two basic orbit frequencies, the rates of the argument of the latitude and the ascending node, determine the mapping of the signal measured along the orbit onto the spherical harmonic (SH) spectrum. The main spectral characteristics of temporal aliasing are maxima at specific SH orders. The magnitude of the effects depends on the basic frequencies. This is analyzed with numerical low–low SST closed-loop simulations including both tidal and non-tidal background models and GRACE-like observation noise. Analyses of actual monthly GRACE solutions show that these characteristics do not depend on the low–low SST processing method. Optimal orbits are found in specific altitude bands. The best altitude bands regarding temporal aliasing for polar low Earth orbiters (LEOs) are around 301, 365, 421 and 487 km. In these bands, major aliasing effects do not occur for SH degrees and orders below 70. This study gives unique and in-depth insights into the mechanism of temporal aliasing. As it provides an important orbit design approach, it is independent of any (post-) processing method to reduce temporal aliasing.  相似文献   

18.
应用GRACE卫星数据反演高精度静态地球重力场是大地测量学界的热点之一。考虑到经典动力学法线性化误差随弧长拉长而迅速增长,本文以GRACE卫星轨道观测值为初值的线性化方法,建立了应用GRACE卫星轨道和星间距离变率反演地球重力场的改进动力学法理论模型。利用2003年1月至2010年12月的GRACE卫星姿态、轨道、星间距离变率和非保守力加速度等观测数据,解算了一个180阶次的无约束全球静态重力场模型Tongji-Dyn01s和一个采用Kaula规则约束的全球重力场模型Tongji-Dyn01k。与国际不同机构最新发布的纯GRACE数据解算的重力场模型(包括AIUB-GRACE03S、GGM05S、ITSG-Grace2014k和Tongji-GRACE01)进行比较,并利用DTU13海洋重力异常和GPS/水准高程异常进行外部检核,结果表明,Tongji-Dyn01s与国际最新模型精度处于同一水平,然而Tongji-Dyn01k模型总体上更加靠近EIGEN6C2重力场模型。  相似文献   

19.
乔晶  陈武 《测绘学报》2016,45(Z2):116-131
卫星自主定轨是提高全球卫星导航系统(GNSS)可靠性、稳健性、完整性和生存能力的重要保证。新一代的北斗卫星已可以进行星间链路测距,从而达到提高卫星全球跟踪能力以及实现整个卫星导航系统的自主定轨。然而由于卫星运行会受到多种摄动力的影响,如果不能对这些摄动力进行精密的改正,在没有地面或其他天体提供绝对约束的条件下,导航系统会随着自主定轨时间的延长出现星座整体旋转。卫星所受摄动力分为保守力和非保守力两部分:对于保守力,如地球非球形摄动、潮汐摄动、太阳月球和其他三体引力,现在已有的力学模型可以很精确地进行改正;而非保守力(如太阳光压摄动),则难以用精确的模型进行改正,因此成为影响卫星定轨精度的主要因素。星载加速度计可以高精度地测量非保守力,并已成功应用于重力卫星(CHAMP、GRACE、GOCE)的重力场反演与大气研究中。本文研究主要探讨采用星上加速度计提高北斗卫星自主定轨精度和延长自主定轨时长的可行性。利用模拟的卫星轨道和星间链路数据,以及现有的星载加速度计误差模型,对北斗卫星系统分别使用星间链路数据和星间链路与加速度计组合数据,进行自主定轨与精度评定。计算结果表明,使用星间链路与星载加速度计数据进行自主定轨,较单纯使用星间链路数据精度具有明显改进。在模拟的星间测距观测数据具有0.33m随机噪声以及分米级系统误差,自主定轨两个月的情况下,联合使用加速度计数据的自主定轨IGSO和MEO卫星精度为分米级,而仅使用星间链路数据的定轨精度约为3~6m,比使用加速度计精度低一个量级。  相似文献   

20.
Alternative mission architectures for a gravity recovery satellite mission   总被引:4,自引:1,他引:3  
Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has been providing measurements of the time-varying Earth gravity field. The GRACE mission architecture includes two satellites in near-circular, near-polar orbits separated in the along-track direction by approximately 220 km (e.g. collinear). A microwave ranging instrument measures changes in the distance between the spacecraft, while accelerometers on each spacecraft are used to measure changes in distance due to non-gravitational forces. The fact that the satellites are in near-polar orbits coupled with the fact that the inter-satellite range measurements are directed in the along-track direction, contributes to longitudinal striping in the estimated gravity fields. This paper examines four candidate mission architectures for a future gravity recovery satellite mission to assess their potential in measuring the gravity field more accurately than GRACE. All satellites were assumed to have an improved measurement system, with an inter-satellite laser ranging instrument and a drag-free system for removal of non-gravitational accelerations. Four formations were studied: a two-satellite collinear pair similar to GRACE; a four-satellite architecture with two collinear pairs; a two-satellite cartwheel formation; and a four-satellite cartwheel formation. A cartwheel formation consists of satellites performing in-plane, relative elliptical motion about their geometric center, so that inter-satellite measurements are, at times, directed radially (e.g. parallel to the direction towards the center of the Earth) rather than along-track. Radial measurements, unlike along-track measurements, have equal sensitivity to mass distribution in all directions along the Earth’s surface and can lead to higher spatial resolution in the derived gravity field. The ability of each architecture to recover the gravity field was evaluated using numerical simulations performed with JPL’s GIPSY-OASIS software package. Thirty days of data were used to estimate gravity fields complete to degree and order 60. Evaluations were done for 250 and 400 km nominal orbit altitudes. The sensitivity of the recovered gravity field to under-sampled effects was assessed using simulated errors in atmospheric/ocean dealiasing (AOD) models. Results showed the gravity field errors associated with the four-satellite cartwheel formation were approximately one order of magnitude lower than the collinear satellite pair when only measurement system errors were included. When short-period AOD model errors were introduced, the gravity field errors for each formation were approximately the same. The cartwheel formations eliminated most of the longitudinal striping seen in the gravity field errors. A covariance analysis showed the error spectrum of the cartwheel formations to be lower and more isotropic than that of the collinear formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号