首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time sequence of 105 spectra covering one full orbital period of AA Dor has been analysed. Direct determination of   V  sin  i   for the sdOB component from 97 spectra outside of the eclipse for the lines Mg  ii 4481 Å and Si  iv 4089 Å clearly indicated a substantially smaller value than estimated before. Detailed modelling of line-profile variations for eight spectra during the eclipse for the Mg  ii 4481 Å line, combined with the out-of-eclipse fits, gave   V  sin  i = 31.8 ± 1.8 km s−1  . The previous determinations of   V  sin  i   , based on the He  ii 4686 Å line, appear to be invalid because of the large natural broadening of the line. With the assumption of the solid-body, synchronous rotation of the sdOB primary, the measured values of the semi-amplitude K 1 and   V  sin  i   lead to the mass ratio   q = 0.213 ± 0.013  which in turn gives K 2 and thus the masses and radii of both components. The sdOB component appears to be less massive than assumed before,   M 1= 0.25 ± 0.05 M  , but the secondary has its mass–radius parameters close to theoretically predicted for a brown dwarf,   M 2= 0.054 ± 0.010 M  and   R 2= 0.089 ± 0.005 R  . Our results do not agree with the recent determination of Vŭcković et al. based on a K 2 estimate from line-profile asymmetries.  相似文献   

2.
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.  相似文献   

3.
Photoelectric observations of the WR binary CQ Cephei (WN6+O9) are presented. the depths of the eclipses in the light curves are best represented by an inclination of the orbit i = (68°.8±0.6) and the width of the very asymmetric eclipse curves can be represented by only an overcontact configuration (Ω1 = Ω2 = 3.65 ± 0.05, and f = 27%). Simultaneous solution of the light and radial velocity curves strongly supports CQ Cep's membership of the Cep OB1 association. By considering this membership we obtained absolute dimensions of the system, which lead to a consistent physical model for CQ Cephei. The more luminous WR primary turns out to be the hotter but slightly less massive component: MWR = 20.8 M⊙, RWR = 8.2R⊙, Teff(WR) = 43600 K, and Mo = 21.4 M⊙, Ro = 8.3 R⊙, Teff(O) = 37000 K.  相似文献   

4.
New light curves and photometric solutions of the contact binary AZ Vir are presented in this paper. The light curves appear to exhibit a typical O'Connell effect, with Maximum I being 0.021 mag (V) and 0.023 mag (B) brighter than Maximum II, respectively. From the observations, six times of minimum light were determined and from the present times of minimum light and those collected from the references, the light elements of the system were improved. The light curves were analyzed by means of the Wilson‐Devinney program. The results suggest that AZ Vir is a W‐subtype contact binary with a mass ratio of q = 0.623(2). The asymmetry of the light curves is explained by star spot models. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
CCD (V) light curve of the EW‐type eclipsing variable DF CVn was obtained during seven nights in April–May, 2004. With our data we were able to determine 4 new times of minimum light. The light curve appears to exhibit a typical O'Connell effect, with Maximum I brighter than Maximum II by 0.013 mag. in V. TwoWilson‐Devinney (WD) code working sessions, using the V light curve, were done with and without spots. The analysis of the results shows that the best fit was obtained with the spotted solution and indicates contact geometry. The photometric mass ratio of the system is found to be q = 0.347 and its inclination i = 72°, the primary minimum shows a transit. The star may be classified as an A‐type W Uma system. Assuming a reasonable value for the mass of the primary component an estimate of the absolute elements of DF CVn has been made, with the assumption that the primary has a mass corresponding to its spectral type according to Straizys and Kuriliene (1981). (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
8.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present well-sampled uvby light curves, supplemented by a few β filter measurements, of the Algol binary VV UMa. The light curves are analysed using two different codes to derive the orbital and absolute stellar parameters of this binary. We find reasonably good fits to the light curves and determine the stellar effective temperatures T eff,1≃9000–9600 K , and T eff,2≃5300–5600 K with a mass ratio q ≃0.35 . From the light-curve fits we discard the possibility of an anomalous gravity-darkening exponent for the secondary star of this system, as previously suggested.
We find evidence of short-term, small-amplitude variations in the brightness of the system. Two periodicities of about 1.10 and 0.51 h seem to be present in the data for at least two different nights, even within the secondary eclipse. This suggests that VV UMa may be a new Algol binary with a low-amplitude variable primary star, but new data collected during longer observing runs are necessary to confirm the pulsating nature of the brightness variations.  相似文献   

10.
11.
Seven charge-coupled device(CCD)photometric times of light minimum of the overcontact binary BS Cas which were obtained from 2007 August to November and one CCD light curve in the R band which was observed on 2007 September 24 and October 15,are presented.It is found that the light curve of BS Cas has characteristics like a typical EW-type light variation.The light curve obtained by us is symmetric and shows total eclipses,which is very useful for determining photometric parameters with high precision.Photometric solutions were derived by using the 2003 version of the Wilson-Devinney code.It shows that BS Cas is a W-subtype overcontact binary(f = 27.5% ± 0.4%)with a mass ratio of q = 2.7188 ± 0.0040.The temperature difference between the two components is 190 K.Analysis of the O-C curve suggests that the period of AE Phe shows a long-term continuous decrease at a rate of dP/dt=-2.45 × 10-7 dyr-1.The long-time period decrease can be explained by mass transfer from the primary to the secondary.  相似文献   

12.
Using improved techniques, high-quality CCD uvbyVI photometry has been obtained for the eclipsing binary HV 982 in the Large Magellanic Cloud (LMC). International Ultraviolet Explorer ultraviolet spectrophotometry was also obtained. These data have been analysed using the Wilson–Devinney synthetic light-curve code and Kurucz low-metallicity model atmospheres as well as the EBOP code. The system is detached and the orbit is eccentric. Apsidal motion is detected with apsidal period 205 ± 7 yr. The effective temperatures of the components are found via flux fitting to be T eff,1 = 28 000 ± 5000 K and T eff,2 = 27 200 ± 5000 K. The large errors result from uncertainties over the appropriate interstellar extinction correction. The system plausibly comprises two ∼ 8 M stars of radius 6–7 R separated by ∼ 30 R. For pedagogical and historical interest, the near simultaneity of the eclipse minima at different wavelengths is used to constrain the constancy of the speed of light with wavelength and the mass of the photon, yielding m γ < 10−41 kg. Because of the great distance to HV 982, this limit is some 102 times smaller than previously achieved with eclipse timings, but it is nevertheless 10 orders of magnitude less stringent than that which is provided by satellite measurements of planetary magnetic fields.  相似文献   

13.
14.
The first ground‐based BVR photometric observations of the recently discovered eclipsing binary V744 Cas are presented. From these measurements, timings for two primary and one secondary minima have been calculated. The light curves of the system were analyzed by using the Wilson‐Devinney program. The analysis shows that the system is detached with two similar components of spectral type A2V, and the orbit is eccentric (e = 0.0662 ± 0.0005). The longitude of the periastron (ω) was found significantly different for two different light curves (ours and that of Hipparcos), which is strongly suggestive of an apsidal motion with a period of about 425 ± 68 yr. This makes V744 Cas an important candidate for studies of apsidal motions. The first estimate of the absolute dimensions place the system close to the terminal age of the main sequence (TAMS) in the HR diagram. The distance from the spectroscopic parallax (d = 740 ± 10 pc) was found to be slightly larger than the Hipparcos distance of d = 610 ± 400 pc. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The EF Boo eclipsing binary system is studied in the context of optical light curves and radial velocity curves published in the literature. The best‐solution leads to an over‐contact configuration of W–subclass of WUMa systems with a fill‐out factor of 28%. Absolute parameters based on simultaneous solution of light and radial velocity curves are presented. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号