首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
本文在Herold和我们前一工作的基础上,讨论了强磁场中不同情况(相对论情况和非相对论情况)下的逆Compton散射的偏振特性,并与无磁场情况进行了比较,得出一些有益的结果。在研究气体,尤其是具有强磁场天体的高能X射线和γ射线,甚至光学辐射机制时,这些偏振特性必须给予充分注意。  相似文献   

2.
强磁场中的逆Compton散射与γ射线爆能谱   总被引:1,自引:0,他引:1  
  相似文献   

3.
本文认为强磁场中的逆Compton散射可能是γ射线爆的主要辐射机制.其能谱是由源区质子产生的低频光子经强磁场中非热电子的Compton散射形成的.我们利用非相对论情形(B/B_(cr)≤1,hv_i/m_ec~2≤1)下强磁场中的Compton散射微分截面,导出了上述Compton散射的辐射谱公式,由此很好地拟合了典型γ射线爆GB811016的观测能谱.  相似文献   

4.
强磁场中的共振逆康普顿散射(RICS)是产生伽玛射线的有效机制.在前文工作的基础上,导出强磁场中子星中具有幂律能谱的大量相对论电子沿中子星磁轴向外运动时在变化磁场中产生的集体RICS辐射谱(RICS谱光度)的基本公式.由此得到在中子星周边几种典型的低频辐射场中集体RICS辐射谱形的简单解析表示(如热轫致辐射场、黑体辐射场,以及非热低频幂律谱辐射场),以便与实际观测谱形比较.计算表明:在满足匹配条件(即近似共振条件)下,RICS辐射效率很高,其谱形都是两段式(折断的)的幂律谱形式,与周边低频场性质无关.通过计算,再一次论证RICS机制是伽玛射线脉冲星和伽玛暴(GRBs)在高能射线段(硬X-射线和伽玛射线)辐射的一个理想的高效辐射机制。  相似文献   

5.
使用最近期的GRO库中EGRET的γ射线数据,研究了逆康普顿散射对中等银纬区银河弥漫γ射线的贡献。采用了两种分析方法:其一为本文的新分析方法,其中银河宇宙与星际气体相互作用的γ射线的发射率q/4π由γ射线数据本身确定;其二为通常的分析方法,即q/4π由使用了局部银河宇宙线强度的观测值的理论估计给出。通过分析,我们获得了两种方法中逆康普顿散射的贡献与能量的依赖关系。结果表明,逆康普顿散射的贡献是大的。  相似文献   

6.
在X射线天文学以及辐射物理学中,当硬X射线穿过" 冷"的等离子体时所发生的Compton软化是一种重要的辐射转移过程.简要介绍推广的Kompaneets方程,该方程在hv〈mec2及kTe〈mec2较宽松的条件下广泛成立,因此不仅能处理Compton硬化过程,而且也适用于Compton软化过程,后者在目前快速发展的X射线和γ射线天文学中十分重要.基于此方程,我们对天体物理中4种常见辐射谱(Gauss型发射谱线、黑体辐射谱、幂律辐射谱和热轫致辐射谱)在Compton软化情况下的谱演化进行了数值求解,并同Monte Carlo模拟结果做比较,证实了推广的Kompaneets方程的正确性和有效性.最后指出此方程在X射线天文学和γ射线天文学中的重要意义和潜在应用.  相似文献   

7.
本文利用热同步辐射谱和正负电子对双光子湮灭谱直接拟合1979年3月5日γ射线爆观察能谱,从而获得描写源区特性一些参数,结合其它观察资料,探讨了这个爆的源区特性。结果表明,爆源距离不大于2.2kpc,并不是在LMC的N49超新星遗迹处。源区的磁场范围是1.5×(10~(12)—10~(11))G。同步辐射区和双光子湮灭区的厚度分别约为0.05—2.80cm及240—80cm  相似文献   

8.
本文在中子星吸积彗星云模型的基础上,认为软重爆GB790107起源于弱磁化(B~10~8G)中子星,其阵雨式地吸积彗星云将在中子星表面形成一光厚辐射区,该辐射区的温度分布由激波模型确定.这一辐射区中的高温等离子体产生的黑体辐射将很好地拟合GB790107的观测能谱,且获得爆源距离为(1.35~13.5)pc.  相似文献   

9.
An analysis of prompt gamma-rays of X-ray flashes (XRFs) observed with the Swift/BAT has been presented. Our sample includes 235 bursts. It is found that the BAT detection ratio of XRFs to typical Gamma-ray bursts (GRBs) is 42:193, for division at Γ=2 (roughly corresponding Ep~50 keV), Γ being the power law index of the BAT spectrum and Ep, the peak energy (Ep) of the νfν spectrum. This is consistent with the HETE-2 observations. For both XRFS and GRBs Γ are almost normally distributed in the range of 1 to 2.8, similar that observed with HETE-2. The distribution of Γ for the entire set of GRBs/XRFs is not available due to poor statistics on the peak at Γ>2.3. This result probably indicates that the BAT spectrum of a typical XRF could have a Γ of roughly 2.3, if they indeed are a distinct soft component of the GRB population. By comparing the fluence and the peak flux in different energy bands, it is found that the XRFs are ordinarily softer than the GRBs, but during the peak time the spectra of both GRBs and XRF are similar, showing that the dominant radiation mechanisms of both GRBs and XRFs are similar.  相似文献   

10.
强磁场中相对论电子的共振逆康普顿散射(RICS)是产生伽玛射线的有效机制.以前的工作曾论证,伽玛暴(GRB)的早期伽玛射线辐射可能主要由该机制产生.利用此辐射机制,伽玛暴研究中的一些困惑有可能得到较好的解释.例如,观测统计给出的"Amati关系"的起源,两段式(折断式)幂律谱的形成,特别是其中"死线问题"的解决方案,还有偏振的存在等.这里将重点讨论折断幂律谱形成问题.基于单个电子的RICS谱功率公式,导出了强磁场中大量相对论电子穿过周边低频辐射场时产生的集体RICS辐射谱(RICS谱光度)的简化解析公式,并将它应用于中子星周边几种典型的低频场(如黑体辐射场、幂律辐射场以及热轫致辐射场),以便与实际观测谱形比较.计算表明:在满足匹配条件(即近似共振条件)下,RICS辐射效率很高,其谱形普遍为两段式的幂律谱形式,与周边低频场性质无关.还论证RICS机制可能是伽玛暴、软伽玛重复暴和伽玛射线脉冲星在高能射线波段(硬X射线和伽玛射线)的一个理想的高效辐射机制.  相似文献   

11.
The resonant inverse Compton scattering (RICS) of relativistic electrons in intense magnetic fields is an efficient mechanism for producing the highenergy γ-rays. In our previous work it is suggested that the early-stage γ-ray radiation of γ-ray bursts (GRBs) may be mainly produced by this mechanism. By using this mechanism, some puzzles in the study of GRBs can be clarified, e.g., the origin of the Amati relation obtained from the statistics of observations, the formation of the observed two-segment (broken) power-law spectra, the relevant “deadline problem”, the polarization property, etc. Herein our discussion will be focused on the formation of the broken power-law spectra. Based on the formula of the RICS spectral power of individual fast electrons, we have derived the simplified analytical formula of the collective RICS radiation spectrum (RICS spectral luminosity) produced by the assembly of relativistic electrons in an intense magnetic field when they pass through the ambient low-frequency radiation field, and applied it to several typical low-frequency radiation fields (e.g., the black-body radiation field, power-law radiation field and thermal bremsstrahlung field) around the central neutron star, for the convenience of comparison with the observed spectra. Our calculations indicate that the RICS radiation mechanism has a very high efficiency in the hard X-ray and γ-ray wavebands, if the matching condition (i.e., the condition approximate to resonance) is satisfied, and that independent of the ambient radiation field, the produced spectra are commonly the two-segment power-law spectra. Additionally, it is suggested that the RICS mechanism might be an ideal highly-efficient radiation mechanism for the high-energy emissions (hard X-rays and γ-rays) of the GRBs, soft γ-ray repeated bursts (SGRs) and γ-ray pulsars (GRPs).  相似文献   

12.
A new spectrum function is obtained by use of the Compton scattering cross section in the laboratory frame dervied earlier. This spectrum function, besides some modifications in the coefficients of the resonant term, contains also a non-resonant term which is inversely proportional to the square of the magnetic field. Based on this spectrum function, the hardening of thermal photons through inverse Compton scattering by relativistic electron beams on the surface of a strongly magnetized neutron star is investigated. Two new features are found. First, there is a maximum scattered photon energy for a given resonant scattering, beyond which resonance disappears. This maximum depends on the electron energy and the magnetic field, but is independent of the incident photon energy. Second, Beyond each resonant scattering, there is a high-energy tail, resulting from non-resonant scattering. It is also found that all the tails have a common upper limit which is the highest scattered photon energy for the given incident photon and electron energies. These two new features are absent in the Monte Carlo simulations and therefore, may have physical implications for γ-ray emissions.  相似文献   

13.
We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15–150 keV) of the Swift -BAT detector, the spectral fitting is reliable only for fitting models with two or three parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, two parameters) and cut-off power law (CPL, three parameters) models to the time-integrated spectra of the 47 bursts, and we present the corresponding parameters, their uncertainties and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the  ν f ν  peak energy E pk. For these GRBs, we calculate the energy fluence and the rest-frame isotropic-equivalent radiated energy,   E γ,iso  , as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram   E 'pk  versus   E γ,iso  . We confirm a significant correlation between these two quantities (the 'Amati' relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high-energy PL index frozen to −2.3, obtaining a rather good agreement with the 'Amati' relation of non- Swift GRBs.  相似文献   

14.
This paper establishes united classification of gamma-ray bursts and their counterparts on the basis of measured characteristics: photon energy E and emission duration T. We find that the interrelation between these characteristics is such that as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the ET diagram, which represents a natural classification of all observed events in the energy range from about 109 to 10−6 eV and in the corresponding interval of durations from about 10−2 up to 108 s. The proposed classification results from our findings, which are principal for the theory and practical study of the phenomenon.  相似文献   

15.
A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (5r), and the ratio (Rr,x.) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.  相似文献   

16.
Two dimensional distributions of T90 versus Epeak(or Ebreak)for three bright GRB samples have been investigated.The result shows that although both T90 and Epeak(or Ebreak) each span over a wide range,they are restricted to the region log(T90)≤-log(Epeak) 5.24.This cannot be explained by the current fireball model.It may represent a constraint on the fireball model.  相似文献   

17.
18.
19.
The optical flash accompanying GRB 990123 is believed to be powered by the reverse shock of a thin shell. With the best-fit physical parameters for GRB 990123 and the assumption that the parameters in the optical flash are the same as in the afterglow, we show that: 1) the shell is thick rather than thin, and we have provided the light curve for the thick shell case which coincides with the observation; 2) the theoretical peak flux of the optical flash accounts for only 3×10~-4 of the observed. In order to remove this discrepancy, the physical parameters, the electron energy and magnetic ratios, εe and εB, should be 0.61 and 0.39, which are very different from their values for the late afterglow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号