共查询到20条相似文献,搜索用时 15 毫秒
1.
Geostationary Operational Environmental Satellite (GOES) Imager and Sounder data were evaluated to determine the potential effects of volcanic ash detection without the use of a 12 μm infrared (IR) band, on GOES-M (12) through Q (a period of at least 10 years). Principal component analysis (PCA) images with and without 12 μm IR data were compared subjectively for six weak to moderate eruptions using pattern recognition techniques, and objectively by determining a false detection rate parameter. GOES Sounder data were also evaluated in a few instances to assess any potential contributions from the new 13.3 μm Imager band.Results indicated that, during periods of daylight, there was little apparent difference in the quality of IR detection without the 12 μm IR, likely due to a maximum in solar reflectance of silicate ash in a shortwave IR (SWIR) band centered near 3.9 μm. At night when SWIR reflectance diminished, the ash detection capability appeared to be significantly worse, evidenced by increased ambiguity between volcanic ash and meteorological clouds or surface features. The possible effects of this degradation on aviation operations are discussed. The new 13.3 μm IR band on GOES has the capability to help distinguish ash from cirrus clouds, but not from low level clouds consisting of water droplets.Multi-spectral data from higher resolution polar orbiting satellites may also be used to supplement analyses from lower resolution GOES for long-lived ash cloud events. The Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments appear to be the best options in accomplishing this, with additional satellite missions becoming available later in the decade. In summary, it will still be possible to observe and track significant volcanic ash clouds in the GOES-M through Q era (2003–2012) without the benefit of 12 μm IR data, but with some degradation that will be most significant at night. 相似文献
2.
Volcanoes can emit fine-sized ash particles (1–10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7–14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1–10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight. 相似文献
3.
Kenneson G. Dean Jonathan Dehn Kenneth R. Papp Steve Smith Pavel Izbekov Rorik Peterson Courtney Kearney Andrea Steffke 《Journal of Volcanology and Geothermal Research》2004,135(1-2):51
Satellite data were the primary source of information for the eruption of Mt. Cleveland, Alaska on 19 February, and 11 and 19 March 2001. Multiple data sets were used pre-, syn- and post-eruption to mitigate the hazard and determine an eruption chronology. The 19 February eruption was the largest of the three, resulting in a volcanic cloud that formed an arc over 1000 km long, moved to the NE across Alaska and was tracked using satellite data over more than a 50-h period. The volcanic cloud was “concurrently” detected on the GOES, AVHRR and MODIS data at various times and their respective signals compared. All three sensors detected a cloud that had a very similar shape and position but there were differences in their areal extent and internal structural detail. GOES data showed the largest volcanic cloud in terms of area, probably due to its oblique geometry. MODIS bands 31 and 32, which are comparable to GOES and AVHRR thermal infrared wavelengths, were the least effective single channels at detecting the volcanic cloud of those investigated (MODIS bands 28, 29, 31 and 32). MODIS bands 28 and 29 detected the largest volcanic clouds that could easily be distinguished from weather clouds. Of the split-window data, MODIS bands 29 minus band 32 detected the largest cloud, but the band 31 minus band 32 data showed the volcanic cloud with the most internal structural detail. The Puff tracking model accurately tracked the movement, and predicted the extent and shape of this complex cloud even into areas beyond satellite detection. Numerous thermal anomalies were also observed during the eruption on the twice-daily AVHRR data and the high spatial-resolution Landsat data. The high-resolution Radarsat data showed that the AVHRR thermal anomalies were due to lava and debris flow features and a newly formed fan along the west coast of the island. Field observations and images from a hand-held Forward Looking Infrared Radiometer (FLIR) showed that the flow features were ′a′a lava, debris flows and a warm debris fan along the west coast. Real-time satellite data were the primary tool used to monitor the eruption, track changes and to mitigate hazards. High-resolution data, even though coverage is infrequent, were critical in helping to identify volcanic processes and to compile an eruption chronology. 相似文献
4.
P.W. Webley B.J.B. Stunder K.G. Dean 《Journal of Volcanology and Geothermal Research》2009,186(1-2):108
Ash clouds are one of the major hazards that result from volcanic eruptions. Once an eruption is reported, volcanic ash transport and dispersion (VATD) models are used to forecast the location of the ash cloud. These models require source parameters to describe the ash column for initialization. These parameters include: eruption cloud height and vertical distribution, particle size distribution, and start and end time of the eruption. Further, if downwind concentrations are needed, the eruption mass rate and/or volume of ash need to be known. Upon notification of an eruption, few constraints are typically available on many of these source parameters. Recently, scientists have defined classes of eruption types, each with a set of pre-defined eruption source parameters (ESP). We analyze the August 18, 1992 eruption of the Crater Peak vent at Mount Spurr, Alaska, which is the example case for the Medium Silicic eruption type. We have evaluated the sensitivity of two of the ESP – the grain size distribution (GSD) and the vertical distribution of ash – on the modeled ash cloud. HYSPLIT and Puff VATD models are used to simulate the ash clouds from the different sets of source parameters. We use satellite data, processed through the reverse absorption method, as reference for computing statistics that describe the modeled-to-observed comparison. With the grain size distribution, the three options chosen, (1) an estimated distribution based on past eruption studies, (2) a distribution with finer particles and (3) the National Oceanic and Atmospheric Administration HYSPLIT GSD, have little effect on the modeled ash cloud. For the initial vertical distribution, both linear (uniform concentration throughout the vertical column) and umbrella shapes were chosen. For HYSPLIT, the defined umbrella distribution (no ash below the umbrella), apparently underestimates the lower altitude portions of the ash cloud and as a result has a worse agreement with the satellite detected ash cloud compared to that with the linear vertical distribution for this particular eruption. The Puff model, with a Poisson function to represent the umbrella cloud, gave similar results as for a linear distribution, both having reasonable agreement with the satellite detected cloud. Further sensitivity studies of this eruption, as well as studies using the other source parameters, are needed. 相似文献
5.
Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand 总被引:1,自引:0,他引:1
Shane J. Cronin V. E. Neall J. A. Lecointre M. J. Hedley P. Loganathan 《Journal of Volcanology and Geothermal Research》2003,121(3-4):271-291
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis. 相似文献
6.
M. R. Patrick J. Dehn K. R. Papp Z. Lu K. Dean L. Moxey P. Izbekov R. Guritz 《Journal of Volcanology and Geothermal Research》2003,127(1-2):87-105
Okmok Volcano, in the eastern Aleutian Islands, erupted in February and March of 1997 producing a 6-km-long lava flow and low-level ash plumes. This caldera is one of the most active in the Aleutian Arc, and is now the focus of international multidisciplinary studies. A synthesis of remotely sensed data (AirSAR, derived DEMs, Landsat MSS and ETM+ data, AVHRR, ERS, JERS, Radarsat) has given a sequence of events for the virtually unobserved 1997 eruption. Elevation data from the AirSAR sensor acquired in October 2000 over Okmok were used to create a 5-m resolution DEM mosaic of Okmok Volcano. AVHRR nighttime imagery has been analyzed between February 13 and April 11, 1997. Landsat imagery and SAR data recorded prior to and after the eruption allowed us to accurately determine the extent of the new flow. The flow was first observed on February 13 without precursory thermal anomalies. At this time, the flow was a large single lobe flowing north. According to AVHRR Band 3 and 4 radiance data and ground observations, the first lobe continued growing until mid to late March, while a second, smaller lobe began to form sometime between March 11 and 12. This is based on a jump in the thermal and volumetric flux determined from the imagery, and the physical size of the thermal anomalies. Total radiance values waned after March 26, indicating lava effusion had ended and a cooling crust was growing. The total area (8.9 km2), thickness (up to 50 m) and volume (1.54×108 m3) of the new lava flow were determined by combining observations from SAR, Landsat ETM+, and AirSAR DEM data. While the first lobe of the flow ponded in a pre-eruption depression, our data suggest the second lobe was volume-limited. Remote sensing has become an integral part of the Alaska Volcano Observatory’s monitoring and hazard mitigation efforts. Studies like this allow access to remote volcanoes, and provide methods to monitor potentially dangerous ones. 相似文献
7.
D. Andronico C. Spinetti A. Cristaldi M.F. Buongiorno 《Journal of Volcanology and Geothermal Research》2009,180(2-4):135
Mt. Etna, in Sicily (Italy), is one of the world's most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system with polar satellite data represents a novel approach to monitor Etna's eruptive activity, and makes Etna one of the few volcanoes for which this surveillance combination is routinely available.In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA–AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their dimensions and plume height, taking into account wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures. 相似文献
8.
9.
The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982–2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested. 相似文献
10.
11.
12.
Julie Fero Steven N. Carey John T. Merrill 《Journal of Volcanology and Geothermal Research》2009,186(1-2):120-132
PUFF and HAZMAP, two tephra dispersal models developed for volcanic hazard mitigation, are used to simulate the climatic 1991 eruption of Mt. Pinatubo. PUFF simulations indicate that the majority of ash was advected away from the source at the level of the tropopause (~ 17 km). Several eruptive pulses injected ash and SO2 gas to higher altitudes (~ 25 km), but these pulses represent only a small fraction (~ 1%) of the total erupted material released during the simulation. Comparison with TOMS images of the SO2 cloud after 71 and 93 h indicate that the SO2 gas originated at an altitude of ~ 25 km near the source and descended to an altitude of ~ 22 km as the cloud moved across the Indian Ocean. HAZMAP simulations indicate that the Pinatubo tephra fall deposit in the South China Sea was formed by an eruption cloud with the majority of the ash concentrated at a height of 16–18 km. Results of this study demonstrate that the largest concentration of distal ash was transported at a level significantly below the maximum eruption column height (~ 40 km) and at a level below the calculated height of neutral buoyancy (~ 25 km). Simulations showed that distal ash transport was dominated by atmospheric circulation patterns near the regional tropopause. In contrast, the movement of the SO2 cloud occurred at higher levels, along slightly different trajectories, and may have resulted from gas/particle segregations that took place during intrusion of the Pinatubo umbrella cloud as it moved away from source. 相似文献
13.
Nina Mateshvili Frans J.M Rietmeijer 《Journal of Volcanology and Geothermal Research》2003,120(1-2):55-69
Stratospheric aerosol loading from early 1981 to late 1985 was investigated by remote optical measurements using the twilight sounding method and by in situ mineral dust collections. Both experiments tracked the decay of aerosol abundances after the El Chichón eruption. A comparison between the remote optical observations and dust samplings suggests that aerosol maxima in 1985 were probably associated with a minor eruption of the Bezymianny volcano. Considering the different dynamical behavior of volcanic ash and condensed sulfuric acid aerosol, we traced the origin of collected dust to a minor eruption of Una Una volcano. This collected dust that could not be detected by remote sensing techniques against the high background level due to condensed aerosol from El Chichón highlights the complimentary nature of stratospheric dust collections and the twilight sounding method. 相似文献
14.
Roberto Sulpizio Rosanna Bonasia Pierfrancesco Dellino Mauro A. Di Vito Luigi La Volpe Daniela Mele Giovanni Zanchetta Laura Sadori 《Journal of Volcanology and Geothermal Research》2008
Ash samples from tephra layers correlated with the Pomici di Avellino (Avellino Pumice) eruption of Somma-Vesuvius were collected in distal archives and their composition and particle morphology investigated in order to infer their behaviour of transportation and deposition. Differences in composition and particle morphologies were recognised for ash particles belonging to the magmatic Plinian and final phreatomagmatic phases of the eruption. The ash particles were dispersed in opposite directions during the two different phases of the eruption, and these directions are also different from that of coarse-grained fallout deposits. In particular, ash generated during magmatic phase and injected in the atmosphere to form a sustained column shows a prevailing SE dispersion, while ash particles generated during the final phreatomagmatic phase and carried by pyroclastic density currents show a general NW dispersion. These opposite dispersions indicate an ash dispersal influenced by both high and low atmosphere dynamics. In particular, the magmatic ash dispersal was first driven by stratospheric wind towards NE and then the falling particles encountered a variable wind field during their settling, which produced the observed preferential SE dispersal. The wind field encountered by the rising ash clouds that accompanied the pyroclastic density currents of the final phreatomagmatic phase was different with respect to that encountered by the magmatic ash, and produced a NW dispersal. These data demonstrate how ash transportation and deposition are greatly influenced by both high and low atmosphere dynamics. In particular, fine-grained particles transported in ash clouds of small-scale pyroclastic density currents may be dispersed over distances and cover areas comparable with those injected into the stratosphere by Plinian, sustained columns. This is a point not completely addressed by present day mitigation plans in case of renewal of activity at Somma-Vesuvius, and can yield important information also for other volcanoes potentially characterised by explosive activity. 相似文献
15.
The 1982 eruption of El Chichon inspired a new technique for monitoring volcanic clouds. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite were used to measure sulfur dioxide in addition to ozone. For the first time precise data on the sulfur dioxide mass in even the largest explosive eruption plumes could be determined. The plumes could be tracked globally as they are carried by winds. Magmatic eruptions could be discriminated from phreatic eruptions. The data from El Chichon are reanalyzed in this paper using the latest version of the TOMS instrument calibration (V8). They show the shearing of the eruption cloud into a globe-circling band while still anchored over Mexico in three weeks. The measured sulfur dioxide mass in the initial March 28 eruption was 1.6 Tg; the April 3 eruption produced 0.3 Tg more, and the April 4 eruptions added 5.6 Tg, for a cumulative total of 7.5 Tg, in substantial agreement with estimates from prior data versions. TOMS Aerosol Index (absorbing aerosol) data show rapid fallout of dense ash east and south of the volcano in agreement with Advanced Very High Resolution Radiometer (AVHRR) ash cloud positions. 相似文献
16.
ACTIVE system for monitoring volcanic activity: A case study of the Izu-Oshima Volcano,Central Japan
Hisashi Utada Yuji Takahashi Yuichi Morita Takao Koyama Tsuneomi Kagiyama 《Journal of Volcanology and Geothermal Research》2007
A system is proposed for the monitoring of changes in the underground structure of an active volcano over time by applying a transient electromagnetic method. The monitoring system is named ACTIVE, which stands for Array of Controlled Transient-electromagnetics for Imaging Volcano Edifice. The system consists of a transmitter dipole used to generate a controlled transient electromagnetic (EM) field and an array of receivers used to measure the vertical component of the transient magnetic field at various distances, with automatic operation of both units. In order to verify the performance of the proposed system, numerical and field experiments were carried out by application of the system to the Izu-Oshima volcano, where a remarkable change in the apparent DC resistivity over time had been detected in association with the eruption in 1986. 相似文献
17.
T. Scolamacchia J. L. Macías M. F. Sheridan S. R. Hughes 《Bulletin of Volcanology》2005,68(2):171-200
The detailed stratigraphic study of the pyroclastic surge units S1, IU, and S3 produced during the most violent phases of the 1982 eruption of El Chichón volcano, contains a complex succession of hydromagmatic events triggered by the interaction of different proportions of magma and external water. Component analyses of the horizons within single units reveal that almost all wet and cohesive horizons contain ash aggregates. Based on their morphology and internal structure four different types of aggregates were distinguished: (a) accretionary lapilli, (b) armored lapilli, (c) irregular aggregates, and (d) cylindrical aggregates. The first three types have been described in the volcanological literature (field and experimental studies); cylindrical forms are reported here for the first time. These hollow cylindrical aggregates consist of concentric layers of crystals and glass fragments set in a finer-grained matrix. They formed around millimeter-size foliage fragments that are locally preserved in the interior of the aggregates as scorched or completely carbonized vestiges. SEM analyses suggest different mechanisms of formation for the four types of aggregates. Irregular aggregates and armored lapilli formed nearly instantaneously, whereas accretionary lapilli and cylindrical aggregates resulted from progressive aggregation of ash in different regions of the eruptive cloud.All types of ash aggregates contain fractured particles. This common feature suggests that particles ruptured during fragmentation prior to the growth of the aggregates. Broken clasts with cracks filled by a fine-grained matrix only occur inside the cylindrical ash aggregates and to a lesser degree in some types of accretionary lapilli. This suggests that small thermal contrasts at the contact of warm particles with the colder fine-grained matrix of the aggregate cause existing small fractures to propagate and open as the already weakened clasts deform slightly. The occurrence of all four types of aggregates in some horizons indicates that several mechanisms of aggregation occurred nearly simultaneously. The pyroclastic clouds therefore were not only stratified in terms of density but the content of fluid phases also were not uniform. A dark-red, Fe-rich amorphous film (locally rich in P and S) envelops the particles and fosters their preservation in the deposits by forming a hard shell. The composition of this cement reflects the abundance of these elements in acid fluids of hydrothermal systems that were intersected by the conduit during the eruption. In distal areas, fallout aggregates were incorporated by dissipating pyroclastic surges. 相似文献
18.
基于多源卫星数据的小型水体蓝藻水华联合监测——以天津于桥水库为例 总被引:3,自引:0,他引:3
近年来水体富营养化呈扩张趋势,蓝藻水华不仅在太湖等大型湖泊频发,水面面积较小的天津于桥水库等也形势严峻,亟需加强卫星遥感监测.但是,以往在太湖等业务化使用非常成功的MODIS等卫星数据(约500 m),由于空间分辨率较低,难以满足小型水体的监测要求;而Landsat-8等空间分辨率较高的卫星数据(30 m),通常重返周期较长,无法满足水华高频监测需求.本文以天津市于桥水库(面积约80 km2)为研究区,针对常用的卫星数据,从空间、时间、光谱范围和数据可获取性共4个方面,评价不同卫星数据蓝藻水华监测能力和算法,同时对不同卫星监测结果一致性进行评估.结果表明:(1)筛选出国产HJ-1A\B CCD、GF-1 WFV和美国Landsat-8 OLI这3种卫星波段合适,空间分辨率较高,适用于桥水库蓝藻水华监测,但考虑到其重返周期较长,建议多星联合观测;(2)各个卫星监测结果与卫星影像目视解译结果基本一致,均方根误差和相对误差均分别控制在0.78 km2和4.9%以内;(3)不同卫星监测结果一致性良好,一致性精度达到99.5%;(4)根据历史影像结果,发现于桥水库2016年水质开始呈富营养化,藻华现象在夏、秋两季最为严重.研究表明,针对小型水面水体蓝藻水华监测,利用较高分辨率数据联合监测,是一种有效的替代策略,今后可在更多小型水域推广. 相似文献
19.
It has been proved through experiments that the electromagnetic radiation energy of a substance will vary when stress acts on the substance. This moment, the electromagnetic radiation energy (observation value) received by the remote sensor is triggered not only by the substance temperature and also by the stress. Separating quantitatively these two kinds of electromagnetic radiation energy and then inversing the actual temperature state and stress state of a medium is a matter with practical significance in earthquake prediction and stability monitoring for the large-scale geotechnical engineering. In this paper the principle and the mathematical method for inversing stress by using multiband remote sensing data are discussed in detail. A calculation example is listed. 相似文献