首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The extent and duration of sea ice in Baffin Bay and Davis Strait has a major impact on the timing and strength of the marine production along West Greenland. The advance and retreat of the sea ice follows a predictable pattern, with maximum extent typically in March. We examine the area of sea ice in March in three overlapping study regions centred on Disko Bay on the west coast of Greenland. Sea ice concentration estimates derived from satellite passive microwave data are available for the years 1979-2001. We extend the record back in time by digitizing ice charts from the Danish Meteorological Institute, 1953-1981. There is reasonable agreement between the chart data and the satellite data during the three years of overlap: 1979-1981. We find a significant increasing trend in sea ice for the 49-year period (1953-2001) for the study regions that extend into Davis Strait and Baffin Bay. The cyclical nature of the wintertime ice area is also evident, with a period of about 8 to 9 years. Correlation of the winter sea ice concentration with the winter North Atlantic Oscillation (NAO) index shows moderately high values in Baffin Bay. The correlation of ice concentration with the previous winter's NAO is high in Davis Strait and suggests that next winter's ice conditions can be predicted to some extent by this winter's NAO index.  相似文献   

3.
A time series of ERS-1 SAR images is used to estimate ice drift in the Fram Strait January-March 1992 (the ERS-1 mission first ice phase). The images all cover the same area. The sampling interval is three days. The paper shows examples of estimation of ice drift and divergence from this image time series. Divergence is an important quantity in order to estimate ice production and hence mixing of the ocean water masses.
A reference configuration of ice points is defined for each image. These ice points are identified in the successive image giving a set of point pairs. These point pairs are input for statistical analysis.
Upward looking sonars (ULS) and current meters are moored below the scene. A combination of the SAR derived dynamics and the ULS derived ice thickness series will give opportunities to estimate ice mass flux into the Greenland Sea, and to improve ice classification algorithms.  相似文献   

4.
5.
The origin of the large positive anomaly of the Fram Strait sea ice export which occurred in winter 1994/95 is analysed on the basis of a model simulation of the Arctic sea ice cover over the period 1993-98. The overall intra-annual and interannual variability in the model is in good agreement with observational estimates and the 1994/95 anomaly is well reproduced with an amplitude amounting to half of the mean winter value. Model results suggest that, concomitant to anomalous export velocities, larger than usual ice thickness in the strait contributes to the outstanding amplitude of the anomaly. Analysis on the ice thickness evolution in the strait indicates that the thick ice advected in Fram Strait at the end of the fall of 1994 originates in the anomalous cyclonic wind stress which prevailed during the preceding summer. This anomalous wind stress resulted in persistent convergence of the ice flow against the northern coasts of Canada and Greenland and in the formation of a large thickness anomaly north of Greenland. The anomaly then feeds the Fram Strait ice flow during those following winter months when the local wind forcing in the strait favours ice drift from the north-west. Our results suggest that short-term wind stress variations resulting in local thickness changes to the north of Fram Strait can lead to substantial variability of the Fram Strait ice export.  相似文献   

6.
This study examines the sea ice cover minima in the western Arctic in the context of several climatic mechanisms known to impact its variability. The September latitude of western Arctic sea ice is measured along 11 equally-spaced longitudes extending from 176º?W to 126º?W in the Chukchi and Beaufort Seas, 1953–2010. Indices of seasonal atmospheric and oceanic teleconnections and annual mean Northern Hemisphere temperatures (NHT) and CO2 concentration are orthogonalized using rotated principal component analysis, forming predictors regressed onto the sea ice latitude data at each longitude using stepwise multiple linear regression. Prior to 1998, small amounts of September ice edge variance are explained by teleconnections such as the Arctic Dipole, Arctic Oscillation, and Pacific-North American Pattern. NHTs begin explaining large amounts of ice edge variance starting in 1998. For the 1953–2010 period, up to 68% of the ice edge variance is explained at 161°?W in the Chukchi Sea, mostly by NHTs. With the exception of the three easternmost longitudes (136–126°?W), the teleconnections and NHTs explain over 50% of the regional ice edge variance. Increases in both NHTs and ice retreat since the mid-1990s account for the large explained variances observed in regression analyses extending into recent years.  相似文献   

7.
8.
Hydrographic and current measurements in the Fram Strait, August 1981   总被引:2,自引:1,他引:1  
The hydrographic (CTD) observations and pendulum current measurements obtained with M/S 'Lance' in August 1981 in the area west and north of Spitsbergen, are presented. The warm and saline northward flow, known as the West Spitsbergen Current, is found to follow the shelf break. In the Fram Strait the hydrographic structure is complicated because of eddies and other transient movements. The current measurements suggest a two-layer structure where the velocity vector rotates in opposite directions in the two layers with a period near the semidiurnal tidal period.  相似文献   

9.
10.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

11.
One outstanding feature of the recent Arctic climate is the contrast of the changes of sea ice concentration and thickness between the Beaufort Sea and the Chukchi Sea. Since the Arctic Oscillation (AO) plays a critical role in driving Arctic sea ice changes and the Beaufort and Chukchi seas have been hypothesized as a region in which sea ice anomalies originate, we employed a coupled sea ice-ocean model and carried out simulations forced by the AO signal to examine sea ice changes in these regions, focusing on seasonality. With the AO phase transition from negative to positive, anticyclonic windstress weakens broadly in both winter and summer; however, the surface air temperature response shows remarkable seasonal dependence. Positive temperature anomalies spread over the entire domain in winter, while negative anomalies occur in the shelf seas in summer, although positive anomalies remain in the deep-water portion. The simulated sea ice concentration resembles the observed concentration. The strong seasonality of sea ice concentration changes suggests that accumulation of sea ice concentration in the Beaufort Sea and reduction in the Chukchi Sea are mainly produced in summer. Changes of ice thickness are robust through the seasonal cycle. Generally, sea ice dynamics play a critical role in creating the anomalous sea ice pattern and sea ice thermodynamics partially compensate the dynamically-driven changes. However, considerable seasonal differences occur.  相似文献   

12.
A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955-2001 has been performed with a global, coarse resolution ice-ocean model driven by the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of Ø1% per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8% per decade and an upward trend in Antarctic ice volume of 1.5% per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.  相似文献   

13.
海冰与海水的交界地带是海-冰-气相互作用的重要区域,其变化会影响海洋生物栖息地的联通状态和海洋、大气的交换,确定海冰边界对于分析海冰动态变化具有重要意义[1-2]。被动微波传感器为长期监测海冰变化提供了大尺度的连续观测数据。从经典统计、随机集理论出发,应用三种由被动微波日均海冰密集度数据提取月均海冰边界的方法,分析三种月均边界的差异,以及不同月均边界提取方法对海冰长期变化分析的影响。  相似文献   

14.
刘玥  庞小平  赵羲  苏楚钦  季青 《极地研究》2018,30(2):161-172
采用美国冰雪数据中心(NSIDC)的日尺度与月尺度海冰密集度数据,将海冰密集度为15%作为阈值确定海冰外缘线位置,提取波弗特海海域的海冰外缘线,计算波弗特海的海冰密集度、海冰范围与海冰面积,然后通过海冰范围与海冰外缘线的年际变化与季节变化来分析波弗特海海冰外缘线退缩的时空变化特征与趋势。实验结果表明,1978—2015年波弗特海的海冰密集度、海冰范围与海冰面积整体变化趋势一致,减少趋势显著。37年来,海冰密集度平均每年减少约0.3%,海冰范围平均每年减少3 235 km2,海冰面积平均每年减少5 084 km2。海冰密集度在1979—1996年无明显减少趋势,1996—2015年减少趋势明显。波弗特海海冰范围一般在9月达到最小值,在11月至次年5月维持在最大值(全冰覆盖状态);海冰面积一般在9月达到最小值,在12月或者1月达到最大值。海冰范围最小值出现时间有延迟的趋势,全冰覆盖状态具有起始时间越来越晚、终止时间越来越早、持续时间越来越短的趋势,平均持续天数为212 d。  相似文献   

15.
In previous work, whaling catch positions were used as a proxy record for the position of the Antarctic sea ice edge and mean sea ice extent greater than the present one spanning 2.8° latitude was postulated to have occurred in the pre-1950s period, compared to extents observed since 1973 from microwave satellite imagery. The previous conclusion of an extended northern latitude for ice extent in the earlier epoch applied only to the January (mid-summer) period. For this summer period, however, there are also possible differences between ship and satellite-derived measurements. Our work showed a consistent summer offset (November-December), with the ship-observed ice edge 1 - 1.5° north of the satellite-derived ice edge. We further reexamine the use of whale catch as an ice edge proxy where agreement was claimed between the satellite ice edge (1973-1987) and the ship whale catch positions. This examination shows that, while there may be a linear correlation between ice edge position and whale catch data, the slope of the line deviates from unity and the ice edge is also further north in the whale catch data than in the satellite data for most latitudes. We compare the historical (direct) record and modern satellite maps of ice edge position accounting for these differences in ship and satellite observations. This comparison shows that only regional perturbations took place earlier, without significant deviations in the mean ice extents, from the pre-1950s to the post-1970s. This conclusion contradicts that previously stated from the analysis of whale catch data that indicated Antarctic sea ice extent changes were circumpolar rather than regional in nature between the two periods.  相似文献   

16.
1IntroductionRecently,whetherpolaristhemostsensitiveregiontoglobalclimatechangegreatlyconcernsmanyscholars.Thechangeofpolarse...  相似文献   

17.
An analytical approximation of spectral albedo is derived for a melt pond with a Lambertian bottom assuming that Rayleigh scattering in the water is small compared to absorption. A Monte Carlo method is used to verify that scattering can he ignored in the water. This enables us to calculate pond albedos in the 400–700 nm wavelength hand using the analytical approximation. Model calculations and observations indicate that a step-decrease in albedo is likely t o occur when a melt pond initially forms, and melt pond albedos in the visible depend more on the structural and optical properties of the bottom than on the depth of the pond.  相似文献   

18.
On small-meso scale,the sea ice dynamic characteristics are quite different from that on large scale.To model the sea ice dynamics on small-meso scale,a new elastic-viscous-plastic(EVP) constitutive model and a hybrid Lagrangian-Eulerian (HLE) numerical method are developed based on continuum theory.While a modified discrete element model(DEM) is introduced to model the ice cover at discrete state.With the EVP constitutive model,the numerical simulation for ice ridging in an idealized rectangular basin is carried out and the results are comparable with the analytical solution of jam theory.Adopting the HLE numerical model,the sea ice dynamic process is simulated in a vortex wind field.The furthering application of DEM is discussed in details for modeling the discrete distribution of sea ice.With this study ,the mechanical and numerical models for sea ice dynamics can be improved with high precision and computational efficiency.  相似文献   

19.
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.  相似文献   

20.
During the summer 1987 expedition of the polar research vessel'Polarstern'in the Eurasian Basin of the Arctic Ocean, sea ice at about 84-86°N and 20-30°E was found to have high concentrations of particulate material. The particle-laden ice occurred in patches which often darkened more than half the ice surface at our northernmost positions. Much of this ice appeared to be within the Siberian Branch of the Transpolar Drift stream, which transports deformed, multi-year ice from the Siberian shelves westward across the Eurasian Basin. Lithogenic sediment, which is the major component of the particulate material, may have been incorporated during ice formation on the shallow Siberian seas. Diatoms collected from the particle-rich ice surfaces support this conclusion, as assemblages were dominated by a marine benthic species similar to that reported from sea ice off the coast of northeast Siberia. Based on drift trajectories of buoys deployed on the ice it appears that much of the particle-laden ice exited the Arctic Ocean through the Fram Strait and joined the East Greenland Current.
Very different sea ice characteristics were found east of the Yermak Plateau and north of Svalbard and Frans Josef Land up to about 83-84°N. Here sea ice was thinner, less deformed, with lower amounts of lithogenic sediment and diatoms. The diatom assemblage was dominated by planktonic freshwater species. Trajectories of buoys deployed on sea ice in this region indicated a tendency for southward transport to the Yermak Plateau or into the Barents Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号