首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The Kupferschiefer in Poland has an increased U content. The facies high in organic matter are significantly enriched in U. The maximum values of U are mostly in the lower part of the Kupferschiefer sequence. The mean (x) U content in the Kupferschiefer from the Lubin-Sieroszowice district is 61.5 ppm and from the rest of the Polish Zechstein basin is about 26 ppm. Thorium occurs only in small quantities (x) = 1.5 and 5 ppm respectively). The high variance of U and Th in the Kupferschiefer is due to multistage diagenetic processes. The main U carrier is thucholite. The investigated thucholite showed a Th-content below 0.36 ppm. Thucholite with uraninite exolutions showed small (up to 1.0 wt.%) admixtures of U and thucholite without microscopically visible exsolutions (up to 37.85 wt.% U). The phosphates showed significant amounts of U (up to 0.24 wt.). The U content in the Kupferschiefer is significantly lower than in black shales from other part of the world. Uranium in the Lubin district is not economic.  相似文献   

2.
PERYT  PIERRE  & GRYNIV 《Sedimentology》1998,45(3):565-578
Polyhalite deposits in the Zechstein (Upper Permian) of northern Poland occur in the Lower Werra Anhydrite. In the Zdrada Sulphate Platform, the polyhalite appears to be a very early replacement of anhydrite. The replacement was caused by the halite-precipitating brines which contained potassium and magnesium ions. The formation of polyhalite was preceded by the syndepositional anhydritization of the original gypsum deposit which has often preserved its primary textures. This anhydritization on the platform and its slopes was a reaction of the precipitated gypsum in a hydrologically open evaporite basin, with brines of salt basins adjacent to the sulphate platform. These brines, when nearly saturated with respect to halite, and potassium and magnesium rich, reacted with anhydrite to precipitate polyhalite along the slopes of the Zdrada Platform. The oxygen and sulphur isotopic compositions of sulphate evaporites indicate that marine solutions were the only source of sulphate ions supplied to the Zechstein basin, and that anhydrite was transformed to polyhalite by reaction with marine brines more concentrated than those that precipitated precursor calcium sulphate minerals.  相似文献   

3.
Summary Au-and PGE-bearing samples1 from organogenic limestone located in the western part of the Lubin mine have been investigated. They contain: Au–Ag–Pt–Hg alloys, native Pd, sobolevskite (PdBi), native lead and plumbian gold which is related to an admixture of AuPb2, electrum (Ag2Au). Clausthalite also occurs in this association and contains up to 1% Ir. Kerogen is an important member of the association and contains, among others, 700 ppm Pt, 400 ppm Pd, 600 ppm Ir and 1100 ppm Au.These alloys are closely associated with nests of secondary calcite with dark brown internal reflections due to admixture of organic compounds. Organic matter colouring calcite II contains: ketones (chiefly diketones), nitrogen derivatives, phenols, probably tertiary alcohols and aromatic hydrocarbons. Metal carbonyls were also recorded. The organic substances investigated contain oxidation retarding derivatives.
Edelmetall-Legierungen und organische Substanz in den Kupferlagerstätten des Zechstein (Kupferschiefer), Polen
Zusammenfassung Gold und PGE-führende Proben von organogenem Kalkstein aus dem Westteil der Grube Lubin enthalten Au–Ag–Pt–Hg-Legierungen, gediegen Pd, Sobolevskit (PdBi), gediegen Blei und bleireiches Gold. Letzteres ist mit einer AuPb2–Ag2Au-Verwachsung assoziiert. Außerdem konnte Clausthalit (PbSe) mit 1% Ir nachgewiesen werden.Kerogen ist ein wichtiges Glied der Edelmetall-Paragenese und enthält selbst u.a. 700 ppm Pt, 400 ppm Pd, 600 ppm Ir und 1100 ppm Au. Die Edelmetall-Legierungen sind eng mit «Nestern» von sekundärem Calcit vergesellschaftet, dessen dunkelbraune Innenreflexe auf Beimischung organischer Verbindungen zurückgehen.Letztere umfassen: Ketone (vorwiegend -Diketone), Stickstoff-Derivate, Phenole, und wohl auch tertiäre Alkohole und aromatische Kohlenwasserstoffe. Metall-Karbonyl-Verbindungen konnten ebenso nachgewiesen werden. Die untersuchten organischen Verbindungen enthalten Oxydations-verzögernde Derivate.


With 6 Figures  相似文献   

4.
Cu, Pb and Zn are the main metals occurring in sulfides in the Kupferschiefer. They are arranged in the three distinct zones around »Rote Fäule«, in the order Cu, Pb and Zn. Copper zones are enriched in transition metals, i.e. Ag, Ni, Co, V and Mo ranging from 600 to 1500 ppm; they are concentrated especially in the bottom part of black shale. Re is associated with Mo; the Re: Mo ratio in Cu-, Pb- and K-castaingites is about 170.In copper zones, near the contact with lead zones, Au, platinum group metals (PGM) and U are concentrated, ranging from traces to several hundred ppm. The main mechanism of concentration of transition metals was catalytic autooxidation and dehydrogenation of organic matter.The noble metals form either independent minerals or are present in organic matter and thucholite. In the lead zones, at the contact with Cu zones, an increased content of Ag (100–1500) and Hg (5–800) ppm is present. The average Hg content for the black shale of the zone is 61 ppm.A natural gas, exploited from the Rotliegendes beneath the Kupferschiefer, carries, in aerosols, significant amount of Pb, Cu, Mn, Fe, Ag and Hg. This suggests the Rotliegendes as a pathway or as a source of metals for the Kupferschiefer. The presence of K-castaingite intergrown with silvinite (KCl) may suggest K-dominated brines as the mineralizing fluids.
Zusammenfassung Die häufigsten Metalle, die in den Sulfiden des Kupferschiefers vorkommen, sind Kupfer, Blei und Zink. Diese Metalle sind in der Reihenfolge Cu-Pb-Zn an drei bestimmte Zonen um die »Rote Fäule« gebunden.Die Kupfer-führenden Zonen sind reich an Übergangsmetallen wie Ag, Ni, Co, V und Mo, deren Konzentrationen zwischen 600 und 1500 ppm schwanken und die hauptsächlich in bodennahen Bereichen des Schwarzschiefers angereichert sind. Dabei tritt Re in Verbindung mit Mo auf und das Re-Mo Verhältnis in Cu-, Pb- und K-Castaingiten ist ungefähr 170.Gold, Platin-Gruppen-Metalle (PGM) und Uran, deren Konzentrationen zwischen geringen Spuren und mehreren 100 ppm liegen, findet man in Kupfer-führenden Schichten in der Nähe von Kontakten zu Blei-führenden Zonen. Katalytische Autooxidation und Dehydrogenisierung organischen Materials sind die dominierenden Mechanismen, die die Anreicherung der Übergangsmetalle steuern. Die Metalle liegen als Minerale oder gebunden an organische Substanz und Thucholit vor.In den Kontaktbereichen der Blei- und Kupferzonen findet man erhöhte Werte von Ag (100–1500 ppm) und Hg (5–800 ppm). Der Durchschnittswert für Hg im Schwarzschiefer beträgt 61 ppm.Ein natürliches Gas, das aus dem den Kupferschiefer unterlagernden Rotliegenden gefördert wird, enthält als Aerosole bedeutende Mengen an Pb, Cu, Mn, Fe, Ag und Hg. Somit ist es wahrscheinlich, daß das Rotliegende entweder als Quelle der Metalle des Kupferschiefers oder zumindest als Durchgangsstation der Metallführenden Lösungen anzusehen ist. Das Vorkommen von K-Castaingit-Verwachsungen mit Silvinit (KCI) spricht für K-reiche Solen als mineralisierende Lösungen.

Résumé Le Cu, le Pb et le Zn sont les métaux principaux des sulfures de la formation des Kupferschiefer. Ils sont distribués autour de la «Rote Fäule» en trois zones distinctes, dans l'ordre: Cu - Pb - Zn.Les zones à Cu sont enrichies en métaux de transition (Ni, Co, V et Mo) quiy présentent des teneurs de 600 à 1500 ppm; ces métaux sont concentrés spécialement dans les parties inférieures des schistes noirs. Le Re est associé au Mo, avec un rapport Re/Mo de l'ordre de 1,70 dans les castaingites à Cu, Pb et K.Dans les zones à Cu, près du contact avec les zones à Pb, on observe une concentration de Au, de U et des métaux du groupe du Pt, avec des teneurs qui vont des traces à quelques centaines de ppm. Le mécanisme principal de la concentration des métaux de transition a été l'auto-oxydation et la déshydrogénation catalytiques de la matière organique. Les métaux nobles sont sous la forme de minéraux indépendants, ou sont contenus dans la matière organique et la tucholite.Dans les zones à Pb, il existe une concentration en Ag (100–1500 ppm) et en Hg (5–800 ppm) au contact avec les zones à Cu. La teneur moyenne en Hg des schistes noirs est de 61 ppm.Un gaz naturel, exploité à partir des Rotliegende situés sous les Kupferschiefer, renferme, sous forme d'aérosols, des quantités appréciables de Pb, Cu, Mn, Fe, Ag et Hg. Les Rotliegende pourraient donc être soit la source, soit le chenal des métaux contenus dans les Kupferschiefer. La présence d'intercroissances de castaingite potassique et de sylvinite (KC1) suggère que les fluides minéralisants ont pu être des solutions potassiques.

, . «Rote Fäule»., , , .: Ag, Ni, Co, V , 600 1500 ppm; . Re , Re/Mo , 170., , , , , . . , . (100–1500 ppm) Hg (5–800 ppm). 61 m. , , , , , . , , , , - , « » , . KCl , .
  相似文献   

5.
Origin of the Kupferschiefer polymetallic mineralization in Poland   总被引:2,自引:0,他引:2  
The Kupferschiefer ore series, between the Lower Permian (Rotliegendes) terrestrial redbeds/volcanics and the Upper Permian (Zechstein) marine sequence, is developed as dark-grey organic matter-rich and metal sulphide-containing deposits (reduced zone) and as red-stained organic matter-depleted and iron oxide-bearing sediments (oxidized zone?=?Rote Fäule). The transition zone from oxidized to reduced rocks occurs both vertically and horizontally. This zone is characterized by sparsely disseminated remnant copper sulphides within hematite-bearing sediments, replacements of copper sulphides by iron oxides and covellite, and oxide pseudomorphs after framboidal pyrite. These textural features and copper sulphide replacements after pyrite in reduced sediments imply that the main oxide/sulphide mineralization postdated formation of an early-diagenetic pyrite. Hematite-dominated sediments locally contain enrichments of gold and PGE. The Kupferschiefer mineralization resulted from upward and laterally flowing fluids which oxidized originally pyritiferous organic matter-rich sediments to form hematitic Rote Fäule areas, and which emplaced base and noble metals into reduced sediments. It is argued that long-lived and large-scale lateral fluid flow caused the cross-cutting relationships, expansion of the hematitic alteration front, redistribution of noble metals at the outer parts of oxidized areas, and the location of copper orebodies directly above and around oxidized and gold-bearing areas. The Rote Fäule may be a guide to favourable areas for both the Cu-Ag and new Au-Pt-Pd Kupferschiefer-type deposits.  相似文献   

6.
7.
Graphite forms crystals up to 0.08 mm in size in carbonates or argillaceous carbonates directly under- and overlying black shale. Increased contents of Si, Al, Ca, and K in graphite are related to intercalations of graphite-montmorillonite and less to intercalations of graphite-illite. Quartz and gibbsite are also detected. The formation of graphite was probably a two-stage process:
  1. Catalytic oxidation of organic matter. As a result of oxidation original organic matter has been enriched as aromatic hydrocarbons (benzene ring compounds) being most resistant to oxidation.
  2. Ordering of conjugated benzene rings on the 001 montmorillonite plane as a matrix. As a result, the c0 of dry montmorillonite increased to 1.678±0.020 or 2.450±0.050 nm. Primary layers of graphite became themselves matrices for the next layers of conjugated rings producing microscopically visible graphite.
To a less extent the process of dehydrogenesis and conjugation of aromatic rings took place in a reaction with Al, Si, and OH of phyllosilicates producing Al(OH)3 (gibbsite), former H4SiO4 (now quartz), and H2O.  相似文献   

8.
A magmatic-hydrothermal model of tin ore formation can best explain the geological, petrographical and geochemical data on the strata-bound Kellhuani tin district. The tin specialization of the magmatic system of the Chacaltaya porphyry stock, centered in the Kellhuani mining area, is the result of advanced fractional crystallization. The regional tin background of the least fractionated members of the Cordillera Real granite series and of their sedimentary country rocks corresponds to average crustal tin contents.Dedicated to Prof. H.-J. Schneider on the occasion of his 60th birthday  相似文献   

9.
Thirty-seven Kupferschiefer samples from southwestern Poland were analyzed by microscopy, Rock-Eval approach and instrumental neutron activation analysis to understand the geochemical and morphological characteristics of kerogen present in the samples. The analytical results indicate that there are two different types of kerogens. One type was only subjected to thermal alteration processes, and the other was further oxidized after deposition of the sediment.In the oxidized samples migrabitumen was transformed into pyrobitumen. Rock-Eval analyses show a significant decrease in HI values in the oxidized samples and an increase in OI values in relation to the samples that were not influenced by oxidation. Variations in S2 versus Corg contents indicate a change in kerogen from Type II to Type III with progressing oxidation. The presence of pyrobitumen and the depletion of hydrogen in the altered kerogen allow one to conclude that the kerogen was used as hydrogen donor for thermochemical sulfate reduction(TSR).  相似文献   

10.
大水式金矿床地质特征及成冈探讨   总被引:16,自引:3,他引:16  
大水式金矿床是新近发现的一个新类型金矿,其矿化特征独特、埋藏浅、品位高、化学成分简单、易采选、具有委高的经济价值。矿体呈脉状、不规则囊状或漏斗状产于西秦岭造山带三叠纪碳酸盐岩中。矿石主要为一套热液成因的红色、褐色硅化岩和硅质岩,极端贫硫化物。矿石组构和矿物组成等反映出的成矿作用方式主要为热液渗滤交代、构造裂隙和角砾岩孔隙前限空间的充填沉淀作用以及古构造岩溶内相对开放空间中的沉积或堆积作用,构成比较  相似文献   

11.
“镜铁山式”铁铜矿床地质特征及其成因探讨   总被引:12,自引:4,他引:12  
探讨了镜铁山桦树沟矿区铁铜矿床成矿地质背景和成岩成矿的演化过程,阐述控制铁铜矿带在水平和垂向分带变化的地质特征。根据线性构造与火山喷发沉积关系,着重探讨“镜铁山式”铁铜矿床的成因机制,并运用δ34S、δ18O、δ13C测试成果,确立含铁铜硅质岩建造,建立上铁下铜结构分带。认为该类型矿床是与海相火山作用有关的喷气沉积成因矿床,具有与块状硫化物矿床共生,组成铁-铜-硫矿床系列双层成矿结构模式  相似文献   

12.
Upwelling leads on the one hand to an enrichment of trace metals in marine sediments, on the other hand to a lack of precipitations in the coastal area. This explains the geographical association between strata-bound ore deposits and evaporites.
Zusammenfassung Kaltes Auftriebswasser führt einerseits zu einer Anreicherung von Spurenmetallen in marinen Sedimenten, andererseits zu Trockenheit im Küstenbereich. In dieser Weise wird die geographische Assoziation von horizontbeständigen Erzen mit Evaporiten verständlich.


Presented at the St. Andrews meeting of the International Association on the Genesis of Ore deposits, September 1967.  相似文献   

13.
Dolomitization of the Zechstein (Late Permian) Main Dolomite carbonates of northern Poland was penecontemporaneous and/or very early diagenetic. Well-ordered, stoichiometric dolomites are associated with the basinal facies. The platform dolomites are relatively poorly ordered and usually non-stoichiometric. Most samples are highly enriched in 13C, as in other Zechstein carbonates. δ18O values show large variations from -5·1%0 to + 7·4%. There is an isotope zonation of the examined dolomites. The isotope signature indicates that dolomites formed from variable solutions of meteoric water, seawater, and evaporitic brines of possible marine or continental origin. Once initiated, dolomitization proceeded despite the evolution of dolomitizing brines. This evolution explains the occurrence of lagoonal dolomites with common evidence for dissolution in the lower part of sections compared with well-developed rhombohedra in the upper part. Crystal zoning suggests the initiation of dolomite growth in hypersaline water and progressive dilution by fresh water. There is isotopic evidence for migration of continental waters into the basin, presumably following sea-level fall at the end of the deposition of the Main Dolomite. Influence of fresh water on syndepositional dolomitization, well established in the Main Dolomite, strongly suggests that similar relationships may be characteristic for other evaporite-associated dolomites as well.  相似文献   

14.
Over one hundred samples, representing mainly clayey-organic- and carbonate-rich shales (Kupferschiefer) but also other members of different ore sections, including hangingwall dolomites (Z1 Werra) and footwall Weissliegend sandstone (Lower Permian), have been collected in different mines of the Lubin–Głogów mining district, mainly near the contact (transitional zone) between the copper-mineralized zone and secondarily oxidized (Rote Fäule = RF) zone. In general, the Polish Kupferschiefer shales are enriched in MREE in comparison to NASC. In a typical copper-rich ore section the REE amounts and patterns depend on lithologies, being generally similar in shales and dolomite. ∑REE vary among sandstones, shales and dolomites (average 73, 143 and 85 ppm, respectively), probably reflecting mainly their clay contents. Sandstones have strongly convex REE patterns with positive Eu and negative Gd anomalies and depletion in LREE and enrichment in MREE relative to HREE. The REE patterns of shale and dolomite are similar to one another and rather flat, with strong negative Eu anomalies, and a small positive Gd anomaly in the case of shales.The REE patterns of shales from the mineralized Cu-zone are generally convex (MREE enriched) and have negative Eu anomalies. However, in a section with Cu-, Zn- and Pb-shales the REE pattern of Pb-bearing shales shows a positive Eu anomaly, in contrast to other shales and overlying dolomite. More oxidizing conditions of deposition can be assumed for Pb-shales.No significant differences between REE distributions in transitional and oxidized zones have been observed. Their REE patterns are more convex and are much higher (av. 247 ppm) than those in the mineralized zone and they do not show Eu anomalies. The strongly convex pattern may suggest either enrichment in MREE or relative depletion in LREE due to localized precipitation of light REE minerals, both in shales and in the uppermost part of the sandstones.Two unique sections, one Cu-rich and one Cu-lean (partly oxidized), comprising three shale beds interbedded with dolomites have been compared. Generally ∑REE contents are similar in these two sections. Also similar are changes in contents of REE between beds in both sections, which decrease significantly upwards (from 157–171 ppm to 54–60 ppm). The REE patterns of the lowermost beds (directly overlying sandstones) are ramp-like, with LREE enrichments. The upper beds have concave REE patterns. Comparison between sections shows generally stronger negative Eu and positive Gd anomalies in the highly-mineralized section.There is a highly significant positive relationship between Cu and ∑ REE contents in Cu-rich shales and slightly less significant negative relationship for their concentration in oxidized and transitional shales. There is a moderate significant positive correlation between P2O5 and ∑ REE contents in Cu-rich shales.The observed differences in REE contents cannot be provenance dependent but have been caused by diagenetic processes, possibly related to mineralization and oxidation processes. Europium anomalies, generally reflecting different Eh conditions in the deposit, can be eliminated by the prolonged oxidation. Strong enrichment of the RF zones in REE may result from their desorption from large volumes of oxidizing, including mineralizing, solutions which probably emerged from the underlying molasse lithologies into the Rote Fäule areas. Higher contents of REE in the lowermost shales suggest upward movement of solutions from the underlying sandstones also far away from the RF areas.  相似文献   

15.
This paper deais with the geological conditions.mineralization characteristics,genetic types and space-time distribution of the Devonian-Carboniferous strata-bound carbonate-type uranium deposits in South China.These ore deposits are genetically classified as the leaching type and the leaching-hydrothermal superimposed type,These ore deposits are confined mainly to the strata (D2-3,C1)of platform-lagoon carbonate facies.Unique tectonic settings are a vital factor leading to the formation of these uranium deposits.A metallogenetic model for these uranium deposits has been proposed.  相似文献   

16.
The Zechstein Basin of Poland was an area of widespread cyclical deposition of carbonates and evaporites during Late Permian time. The Zechstein shelves, along both the northern and the southern margins of the basin, were sites of shallow-water sedimentation during the formation of the Main Dolomite and Platy Dolomite, two widespread carbonate units. These units consist of oolitic, peloidal, skeletal, micritic and evaporitic carbonates formed in depositional settings ranging from open marine to coastal (lagoonal, sabkha and salina). Although originally deposited as limestones, the Main Dolomite and Platy Dolomite are inferred to have been completely replaced by dolomite through very early stage (essentially penecontemporaneous) reflux of hypersaline brines. The dolomites of the two basin margins, however, have very different petrographic and isotopic characteristics. Many northern shelf dolomites show early stage calcitization (dedolomitization) and even, in some cases, evidence of a subsequent redolomitization event. These northern shelf samples also have a broad range of carbon and oxygen isotopic ratios (up to 12%0 for oxygen). Samples from the southern shelf, on the other hand, are petrographically much simpler; they do not show complex calcitization and redolomitization patterns. Likewise, their isotopic values are much more tightly clustered, with only about a 5%0 range of oxygen isotopic ratios. The differences between dolomites of the same age from the northern and southern margins are best explained by regional variations in river water influx during episodic exposure events associated with regional or global sea-level fluctuations. The distribution of clastic terrigenous materials and palaeokarstic features indicate that areas of the northern shelf had extensive river input, an influx largely lacking on the southern shelf. Early formed dolomites appear to have been calcitized during sea-level lowstands through the infiltration of meteoric fluids into the evaporitic dolomites created during the previous highstand. In some cases, redolomitization occurred when meteoric fluids were again replaced by hypersaline brines during subsequent sea-level highstands. Although repeated sea-level fluctuations are clearly evident in these strata, it is likely that associated climatic changes (rainfall variations) also played a role in forming these complex diagenetic patterns. Age-equivalent strata from Texas and New Mexico (from sites at much lower palaeolatitudes) show no such alteration patterns; samples from Greenland (slightly higher palaeolatitudes) show even more intense diagenetic alteration during depositional cycles. Thus, the examination of patterns of diagenesis may be useful in interpreting ancient, palaeolatitudinally sensitive climate patterns.  相似文献   

17.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

18.
A study of the influences of the basin brines on hydrocarbon generation of the Kupferschiefer in southwestern Poland has been carried out.The samples from the Konrad and Polkowics mines were analyzed by orgainc geochemical,microscopic and FTIR methods.The results indicate that organic matter of Kupferschiefer tends to decrease with the ascending,oxidizing brines,In the Konrad profile,the Kupferschiefer was strongly oxidized.The extract yields were depleted up to 50mg Ext/g Corg.Gas chromatography(GC) and gas chromatography-mass spctrometry(GC/MS) data indicate that the depletion occureed predominantly in saturated hydrocarbon compounds.The identified n-alkanes in smpale KD1 were depleted at least to 5000μg/g Corg.The aromatic compounds show a fidderent trend of variation.The concentrations of phenanthrene alkylphenanthrenes(Ph-PAH) and naphthalene alkylnaphthalenes(Na-PAH) show a decrease,whereas sulfur polyaromatic hydrocarbons(S-PAH)and oxygen polyaromatic hydrocarbons(O-PAH) show an incrase under the influences of oxidizing brines,In the Polkowice profile,organic matter under the influences of oxidizing fluids shows a simlar trend of varation as in the Konrad mine.Analyses of polar compounds shed light on the oxidation processes at the molecule level.The dominant products of oxidation are aliphatic acid.alcohol and ester.FTIR results indicate that the oxidation of organic matter led to a decrease in aliphatic CH3 and an increase in C-O,C=O bands.  相似文献   

19.
The previous study showed that the Zechstein (Upper Permian) anhydrites have about 0.2% strontium with a remarkably small sample scatter. Our study of three lower Zechstein anhydrite units (Lower Anhydrite, Upper Anhydrite and Basal Anhydrite) from West Poland indicate that although often the Sr content is 0.1–0.2%, there are common deviations. In particular, a considerable part (28%) of the studied samples is characterized by lower values (<0.1%), and on the other hand ca. 15% of samples are Sr-enriched, and in those samples celestite was recorded. Particular anhydrite levels differ especially in the frequency of samples showing great Sr content. The greatest variation was found in the Lower Anhydrite. This agrees well with the conclusion derived from the sedimentological studies indicating that there was the greatest differentiation of depositional environments during the deposition of the Lower Anhydrite. The Sr content is a good indicator of brine concentration during the gypsum precipitation and it seems that the subsequent gypsum–anhydrite transformation itself does not affect the strontium distribution. The histograms of Sr content in the Basal Anhydrite indicate a slightly higher brine concentration than it was during the Lower Anhydrite deposition, and the latter in turn was higher than brine concentration during the Upper Anhydrite sedimentation. Celestite veins are clearly diagenetic in origin. The form of celestite occurrence and the increased strontium content (1% or more) indicate an additional source of ions that occurred outside the anhydrite series. In the case of the Lower Anhydrite, the supposed additional source of Sr was related to aragonite-to-calcite transition and squeezing of CaCl2 brines from reefs into anhydrite series due to increased pressure. For the Basal Anhydrite this source could be related to brines derived from the Older Halite deposits.  相似文献   

20.
Stratigraphic and petrographic characteristics of the Creta copper shale deposit in the Flowerpot Shale of southwestern Oklahoma are compared with the betterknown Rudna deposit in the Kupferschiefer of south-western Poland. At Creta, early diagenetic mineralization is indicated by: (1) copper sulfide replacement of large spores and of pyrite, (2) lack of compaction of replaced spores relative to unreplaced spores, (3) enclosure of uncompacted mud and copper sulfides by early matrix gypsum, and (4) location of the ore bed within a thick sequence of fine-grained, low-permeability sediments. This contrasts sharply with evidence of late-diagenetic copper mineralization in the Kupferschiefer at Rudna. Mineralization of copper shales appears to occur over a wide time scale relative to diagenesis of the host sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号