首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

2.
Two cases of on-ice and off-ice air flow characterizing the opposite weather situations over the ice-edge zone in the northern Baltic Sea are analysed on the basis of aircraft observations, and modelled using atwo-dimensional mesoscale model. The stable boundary layer (SBL) during theon-ice flow exhibited little thermal modification, but a low-level jet (LLJ) was generated at the 250-m high top of the SBL. In the model, the LLJ was associated with inertial oscillations in space, while the baroclinicity explained the shape of the wind profile well above the SBL. Although the observed LLJ was most pronounced over the ice, the modelling suggests that it was not generated by the ice edge but by the coastline some 400 km upwind of the ice edge, where a much more drastic change in the thermal stratification and surface roughness took place. The generation, maintenance, and strength of the LLJ were very sensitive to the parameterization of turbulent mixing in the SBL. In the case of the off-ice flow, the modification of the air mass and the development of a convective boundary layer (CBL) both over the ice and open sea were reasonably well modelled. Sensitivity runs suggested that it was essential to take into account the effects of subgrid-scale leads, a forest in the archipelago (which was crossed by the air flow), and water vapour condensationinto ice crystals. The heat flux from leads was particularly important for the heatbudget of the CBL, and the observed growth of the CBL was partly due to theeffective mixing over the rough and relatively warm forest.  相似文献   

3.
The data-collection campaign for the 2008 International Polar Year–Circumpolar Flaw Lead System Study saw the Canadian Coast Guard Ship (CCGS) Amundsen, a research icebreaker, overwinter in high-concentration unconsolidated sea ice in Amundsen Gulf. Environmental monitoring continued into the open-water season. During this period, the Amundsen registered five relatively deep mean sea-level pressure minima (less than 100?kPa). Three were selected for further analysis based on season and the nature of the underlying ocean or sea-ice surface: (1) a winter pressure minimum over unconsolidated sea ice, (2) a spring pressure minimum which likely contributed to the break-up of the sea-ice cover on Amundsen Gulf, and (3) a summer pressure minimum over open water. The characteristics of these pressure minima and the impact of their passage on the atmospheric boundary layer and on the sea-ice cover as they crossed Amundsen Gulf were examined. Several features were revealed by the analysis. (1) The winter and summer pressure minima were migratory cyclones accompanied by Arctic frontal waves with characteristics very similar to the polar frontal waves associated with the migratory cyclones found at more southerly latitudes, whereas the spring pressure minimum was attributed to an Arctic frontal trough of low pressure with the cyclonic centre remaining south of the Gulf. (2) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring disrupted the equilibrium that had been established during more settled periods between the atmospheric boundary layer and the mosaic surface (leads, polynyas, and sea ice); however, equilibrium was quickly re-established. (3) In summer, the thermal structure of the lower atmospheric boundary layer persisted through the passage of the frontal-wave cyclone over the open-water surface. (4) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring modified the mesoscale sea-icescape.  相似文献   

4.
Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the’true’ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.  相似文献   

5.
Boundary-layer measurements made from the Swedish icebreaker Oden during the Arctic Ocean Experiment 2001 (AOE-2001) are analysed. They refer mainly to ice drift in the central Arctic during the period 2–21 August 2001. On board Oden a remote sensing array with a wind profiler, cloud radar and a scanning microwave radiometer, and a regular weather station operated continuously; soundings were also released during research stations. Turbulence and profile measurements on an 18-m mast were deployed on the ice, along with two sodar systems, a microbarograph array and a tethered sounding system. Surface flux and meteorological stations were also deployed on nearby ice floes. There is a clear diurnal cycle in radiation and also in wind speed, cloud base and visibility. It is absent in temperature and humidity, probably due to the very strong control by melting/ freezing ice and snow. In the advection of warm air, latent heat of melting maintains the surface temperature at 0 °C, while with a negative energy balance the latent heat of freezing of the salty ocean water acts to maintain the surface temperature > −2 °C. The constant presence of water at the surface maintains a relative humidity close to 100%, and this is also often facilitated by an increasing specific humidity through the capping inversion, making entrainment a moisture source. This ensures cloudy conditions, with low cloud and fog prevailing most of the time. Intrusions of warm and moist air from beyond the ice edge are frequent, but the local Arctic boundary layer remains at a relatively constant temperature, and is shallow and well mixed with strong capping inversions. Power spectra of surface-layer wind speed sometimes show large variance at low frequency. A scanning radiometer provides a monitoring of the vertical thermal structure with a spatial and temporal resolution not seen before in the Arctic. There are often two inversions, an elevated main inversion and a weak surface inversion, and occasionally additional inversions occur. Enhanced entrainment across the main inversion appears to occur during frontal passages. Variance of the scanning radiometer temperatures occurs in large pulses rather than varying smoothly, and the height to the maximum variance appears to be a reasonable proxy for the boundary-layer depth.  相似文献   

6.
Observations from the summer Arctic Ocean Experiment 2001 (AOE-2001) are analysed with a focus on the interactions between mesoscale and boundary-layer dynamics. Wavelet analyses of surface-pressure variations show daylong periods with different characteristics, some featuring episodes of pronounced high-frequency surface-pressure variability, here hypothesized to be caused by trapped gravity waves. These episodes are accompanied by enhanced boundary-layer turbulence and an enhanced spectral gap, but with only minor influence on the surface stress. During these episodes, mesoscale phenomena were often encountered and usually identified as front-like features in the boundary layer, with a peak in drizzle followed by changing temperature. These phenomena resemble synoptic fronts, though they are generally shallow, shorter-lasting, have no signs of frontal clouds, and do not imply a change in air mass. Based on this analysis, we hypothesize that the root cause of the episodes with high-frequency surface-pressure variance are shallow, mesoscale fronts moving across the pack ice. They may be formed due to local-to-regional horizontal contrasts, for example, between air with different lifetimes over the Arctic or with perturbations in the cloud field causing differential cooling of the boundary layer. Thermal contrasts sharpen as the air is transported with the mean flow. The propagating mesoscale fronts excite gravity waves, which affect the boundary-layer turbulence and also seem to favour entrainment of free tropospheric air into the boundary layer.  相似文献   

7.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

8.
刘辉志  王雷  杜群 《大气科学》2018,42(4):823-832
本文总结了2012~2017年中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室大气边界层物理研究的最新进展,主要包括不同下垫面(城市、青藏高原、草原、沙漠、湖泊、海洋等)大气边界层观测实验、大气湍流和阵风相干结构的理论研究以及大气数值模拟的参数化改进等,同时对未来几年内大气边界层物理的发展方向做了展望。  相似文献   

9.
利用渤海沿岸微波辐射计、风廓线雷达、四分量辐射仪和超声风速仪等多种观测反演资料,并结合常规站点气象资料,卫星云图,浮标气象水文观测和FNL(Final)再分析资料研究了2016年12月17~19日一次环渤海大雾个例产生的天气水文条件以及边界层垂直分层的辐射和湍流特征。研究发现:(1)此次大雾出现在大陆低压前部、入海高压后部的西南低空急流控制区域,与强急流相伴的暖湿平流输送为雾区提供了稳定的逆温和持续的水汽积累,非常有利于大雾天气的形成;(2)水汽通量的分布与低空急流的移动密切相关,近地面比湿的增速与低空急流的强度成正比;(3)由于低空急流的水汽输送增湿了环渤海低层大气,从而增强了大气辐射的衰减效应,导致雾形成前向下短波辐射逐渐减小,向下长波辐射不断增加,净辐射在大雾形成后趋近于零;(4)逆温有效抑制了湍流的发展,近地层湍流动能和摩擦速度微弱。  相似文献   

10.
从一维湍流能量平衡方程出发,回顾了近几十年湍流能量平衡方程中的各项以及Karman常数k的研究成果,总结了大气边界层湍流能量交换特征的研究概况和热点问题,并对今后发展趋势做了展望。实验研究表明,湍流能量平衡方程中的各项在不同条件下有不同的形式;传统的能量产生和耗散的局地平衡假设存在不足,特别是在不稳定条件下,垂直的湍流输运和压力脉动对湍流能量收支起了非常重要的作用。Karman常数与Rossby数和Reynolds数无关,在比较光滑的下垫面上k近似等于040±001。  相似文献   

11.
We have studied the role of low-level clouds in modifying the thermodynamic and turbulence properties of the Arctic boundary layer during autumn. This was achieved through detailed analyses of boundary-layer properties in two regions, one with low-level cloud cover and the other free of clouds, using measurements from a research aircraft during the Beaufort and Arctic Storms Experiment (BASE). Both regions were measured on the same day under similar synoptic forcing. The cloudy region was characterized by strong horizontal inhomogeneity in low-level temperature and moisture that varied with the cloud-top height. The clear region was relatively homogeneous in temperature and specific humidity with a strong temperature inversion extending between heights of 100 m and 3 km. From measurements at the lowest levels, we also identified a shallow mixed layer below the deep stable layer in the clear region.Our spectral analyses revealed significant modifications of boundary-layer properties due to the presence of low-level clouds. In the cloudy region, turbulent perturbations dominated the boundary-layer flow and made large contributions to the scalar variances. In the clear boundary-layer, wave motion contributed significantly to the observed variances, while turbulent flow was relatively weak. The clear region was saturated, although no detectable clouds were measured.  相似文献   

12.
A laboratory convection tank has been established following thepioneering work of Willis and Deardorff, but with many improvements and enhancements thattake advantage of modern technology. The main emphasis in the current design was toprovide the ability to conduct a virtually unlimited number of realizations under essentiallyidentical conditions in order to obtain reliable statistics on the dispersion of plumes and puffsreleased within the simulated atmospheric convective boundary layer. Described herein is the tankitself and its auxiliary systems, including a laser-induced-fluorescence and video-imaging system for makingnon-intrusive, full-field measurements of concentrations, and the interfacing of varioussubsystems with a master controller that automates essentially all operation and measurement functions.The current system provides unprecedented resolution, control, and data volumes. Exampleresults are presented from two types of releases: continuous plumes and instantaneous puffs.These data sets clearly show penetration of the highly buoyant plumes and puffs into theinversion above the convective boundary layer, gravity spreading within the inversion, andrapid diffusion within the mixed layer. They also show extreme `spottiness' in the instantaneousconcentration cross-sections.  相似文献   

13.
大气边界层物理与大气环境过程研究进展   总被引:1,自引:2,他引:1  
张美根  胡非  邹捍 《大气科学》2008,32(4):923-934
总结了近5年来中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室(LAPC)在第二代超声风速温度仪研制、城市边界层研究、复杂地形大气边界层探测与数值模拟、湍流机理研究、大气污染模式发展与应用等领域的主要进展,其中,第二代超声风速温度仪的野外对比测试结果表明其主要性能完全达到了国际先进水平;北京城市化发展使得北京325 m气象塔周边近地面流场已经具备了典型城市粗糙下垫面的流场特征,近地面夏季平均风速呈现非常明显的逐年递减趋势;北京沙尘暴大风时期湍流运动主要是小尺度湍涡运动,而大风的概率分布偏离高斯分布,风速较大的一侧概率分布呈指数迅速衰减,大风中风速很大的部分具有分形特征;珠穆朗玛峰北坡地区两次综合强化探测实验是迄今为止在青藏高原大型山地中实施的针对山地环流和物质/能量交换最为全面和连续的大气过程探测实验;白洋淀地区的观测研究表明,非均匀边界层具有一般边界层不具备的特点,无论是边界层结构还是湍流输送方面,水、陆边界层之间存在一定的差异,凸显其地表非均匀性的作用;为了解决不同尺度、不同类型的大气污染问题和实际应用,研制或发展完善了多套大气污染模式系统,包括全球大气化学模式、区域大气污染数值模式、城市大气污染数值模式和微小尺度(如街区尺度)范围内污染物输送扩散模式。  相似文献   

14.
大气对流边界层发展的模拟研究   总被引:4,自引:0,他引:4  
罗涛  袁仁民  孙鉴泞 《高原气象》2006,25(6):1001-1007
室内水槽模拟是大气边界层研究的一种重要手段。利用室内模拟水槽对大气边界层的发展进行了模拟,通过处理平均温度廓线和光斑图像得到了对流边界层顶部位置h2和边界层高度zi。结果表明,不同测量方法得到的结果一致性很好,与实际大气的边界层发展情况也较为接近。同时,根据试验情况确定初始条件和边界条件,使用边界层参数化模型进行了数值模拟,其结果与室内模拟的结果也较吻合。  相似文献   

15.
北极低空急流和低层逆温特征观测分析   总被引:1,自引:0,他引:1  
利用北冰洋冰表面热量平衡计划1997年10月中旬至1998年10月上旬的探空气球探测结果,分析了北极地区近地层逆温和低空急流特征.结果表明,96%的观测时次(11:15和23:15,协调世界时)出现近地层逆温,其中22%的逆温为贴地逆温,70%的逆温厚度在250~850 m之间,冬半年贴地逆温发生频率、逆温层厚度和逆温层内的温度变化都明显要大于夏半年.全年间低空急流出现频率为41%,平均高度为520 m,最大频率出现在150 m附近,70%的急流出现在600m高度以下.急流平均风速为10.6m·s-1,风速在4~13 m·s-1范围内的急流约占总数的75%,东和东南方向为全年急流的主导风向.根据对急流核和地面风速之间转换角分布的分析,惯性震荡可能是北极低空急流的主要成因.  相似文献   

16.
The atmospheric stable boundary layer (SBL) with a low-level jet is simulated experimentally using a thermally stratified wind tunnel. The turbulence structure and flow characteristics are investigated by simultaneous measurements of velocity and temperature fluctuations and by flow visualization. Attention is focused on the effect of strong wind shear due to a low-level jet on stratified boundary layers with strong stability. Occasional bursting of turbulence in the lower portion of the boundary layer can be found in the SBL with strong stability. This bursting originates aloft away from the surface and transports fluid with relatively low velocity and temperature upward and fluid with relatively high velocity and temperature downward. Furthermore, the relationship between the occurrence of turbulence bursting and the local gradient Richardson number (Ri) is investigated. The Ri becomes larger than the critical Ri, Ricr = 0.25, in quiescent periods. On the other hand, the Ri number becomes smaller than Ricr during bursting events.  相似文献   

17.
边界层急流型重力波——飞机颠簸的一种形成机制   总被引:4,自引:1,他引:4  
采用线性化的Boussinesq流体边界层绝热流动方程,比较一维边界层急流型重力波的垂直运动量级,讨论边界层急流型重力波中的湍流发展,认为边界层急流型重力波是造成边界层飞机颠簸的一种机制。  相似文献   

18.
One-dimensional turbulence (ODT) is a single-column simulation in which vertical motions are represented by an unsteady advective process, rather than their customary representation by a diffusive process. No space or time averaging of mesh-resolved motions is invoked. Molecular-transport scales can be resolved in ODT simulations of laboratory-scale flows, but this resolution of these scales is prohibitively expensive in ODT simulations of the atmospheric boundary layer (ABL), except possibly in small subregions of a non-uniform mesh.Here, two methods for ODT simulation of the ABL on uniform meshes are described and applied to the GABLS (GEWEX Atmospheric Boundary Layer Study; GEWEX is the Global Energy and Water Cycle Experiment) stable boundary-layer intercomparison case. One method involves resolution of the roughness scale using a fixed eddy viscosity to represent subgrid motions. The other method, which is implemented at lower spatial resolution, involves a variable eddy viscosity determined by the local mesh-resolved flow, as in multi-dimensional large-eddy simulation (LES). When run at typical LES resolution, it reproduces some of the key high-resolution results, but its fidelity is lower in some important respects. It is concluded that a more elaborate empirically based representation of the subgrid physics, closely analogous to closures currently employed in LES of the ABL, might improve its performance substantially, yielding a cost-effective ABL simulation tool. Prospects for further application of ODT to the ABL, including possible use of ODT as a near-surface subgrid closure framework for general circulation modeling, are assessed.  相似文献   

19.
大气边界层湍流涡旋结构的小波分解   总被引:20,自引:2,他引:20  
利用离散正交小波在若干物理判别准则下对边界层湍流脉动信号进行去噪和多尺度分解,从而有效地区分出均匀各向同性小涡成份和大尺度含能涡旋成份。能谱分析发现,小涡的谱动力学行为具有非常好的标度不变性,标度关系满足Kolmogorov的“-5/3”律。    相似文献   

20.
The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号