首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

2.
We construct a one-dimensional ecosystem model (nitrate, ammonium, phytoplankton, zooplnakton and detritus) with simple physics and biology in order to focus on the structural relations and intrinsic properties of the food web that characterizes the biological regime in the central equatorial Pacific at 140°W. When possible, data collected during the EgPac and other cruises were used to calibrate model parameters for two simulations that differ in the limiting nutrient, i.e. nitrogen or iron. Both simulations show annual results in good agreement with the data, but phytoplankton biomass and primary production show a more pronounced annual variability when iron is used as the limiting nutrient. This more realistically reproduces the variability of biological production and illustrates the greater coupling between vertical physical processes and biological production when the limiting nutrient is iron rather than nitrogen. The iron simulation also illustrates how iron supply controls primary production variability, how grazingbalances primary production and controls phytoplankton biomass, and how both iron supply and grazingcontrol primary production. These results suggest that it is not possible to capture primary production variability in the central equatorial Pacific with biological models using nitrogen as the limiting nutrient. Other indirect results of this modeling study were: (1) partitioning of export production between dissolved and particulate matter is almost equal, suggesting that the importance of DOC export may have been previously overestimated; (2) lateral export of live biomass has to be taken into account in order to balance the nitrogen budget on the equator at 140°W; and (3) preferential uptake of ammonium (i.e. nitrate uptake inhibition by ammonium) associated with high regeneration of nitrogen (low f ratio as a consequence of the food web structure imposed by iron limitation) largely accounts for the surface build-up of upwelled nitrate.  相似文献   

3.
A five-component (phytoplankton, zooplankton, ammonium, nitrate, detritus) physical–biological model was developed to investigate the effects of physical processes on daily to interannual time scales, on the lower trophic levels of the central equatorial Pacific. Many of the biological processes included in the ecosystem model respond to environmental fluctuations with time scales between 1 and 10 d, which are not typically resolved by basin- to global-scale circulation models. Therefore, the equatorial Pacific ecosystem model is forced using daily information (solar radiation, velocity, temperature) from the Tropical Atmosphere Ocean (TAO) mooring array. The ecosystem model also requires vertical velocity information which necessitated the development of a method for computing daily vertical velocities from the TAO array. Much of the variability in primary production, plankton and nutrient concentrations observed in 1992 during the US Joint Global Ocean Flux Study Equatorial Pacific Process Study time-series cruises (TS1 and TS2), is well reproduced in the model simulations. Simulations demonstrate that lower primary productivities during TS1 as compared to TS2 result from the deeper thermocline that persisted during TS1 as a result of El Niño conditions; however, because of the simultaneous reduction in grazing pressure, simulated chlorophyll levels are similar for these two time periods. Simulations of this single-species ecosystem model successfully reproduce data collected both during and after the El Niño, suggesting that species composition changes are not of first-order importance when examining the effects of the 1991–92 El Niño on the equatorial Pacific ecosystem. A 60–70% increase in chlorophyll concentration and a 400% increase in the chlorophyll contribution by diatoms was associated with the passage of a tropical instability wave (20-d period) across the study site during TS2. This period of high chlorophyll concentration and diatom abundance coincided temporally with strong northward velocities and strong downwelling velocities in the upper euphotic zone. Observations and simulations suggest that this increase in chlorophyll concentration and change in species composition not only results from in situ diatom growth stimulated by increased iron concentrations, but also results from the advection of diatoms toward the convergent front located along the leading (western) edge of the instability wave. Equatorially trapped internal gravity waves can also stimulate in situ phytoplankton growth as high-frequency vertical motions introduce limiting micronutrients, such as iron, into the euphotic zone. Because iron can be taken up by the picoplankton on time scales much shorter than the wave period (6–8 days), these waves may provide a mechanism for effecting a large flux of iron into the euphotic zone. Exclusion of these high-frequency motions results in an iron flux to the euphotic zone that may be underestimated by more than 30%.  相似文献   

4.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

5.
对1979年1月至1987年2月热带太平洋0—400m海水垂直平均温度(TAV)时、空变化的分析表明,在热带西太平洋TAV的年际变化较SST更显著,且与E1 Ni(?)o相联系。在E1 Ni(?)o和反E1 Ni(?)o期间,海洋上层热结构的分布截然不同,E1 Ni(?)o的发生、发展与赤道Kelvin波和热带Rossby波造成的热结构再分布有关。  相似文献   

6.
The response of phytoplankton growth to iron supply and its modulation by large-scale circulation and tropical instability waves (TIWs) in the eastern equatorial Pacific has been investigated with an ocean biogeochemical model. This process study shows that iron can be efficiently advected from the New Guinea shelf through the Equatorial Undercurrent (EUC) to the eastern Pacific. The presence of a continental iron source is necessary for the maintenance of the observed subsurface iron maximum in the EUC core. In the eastern Pacific region, phytoplankton production is enhanced when additional iron is available in the EUC. Simulated phytoplankton variability is linked to TIWs activity, as revealed by a wavelet analysis of the total autotrophic carbon. The net local effect of the waves on phytoplankton can be either positive or negative depending on several factors. When the iron nutricline is sufficiently shallow to be reached by the wave vertical scale, the effect of the waves is to enhance iron availability in the euphotic zone leading to a net local increase of phytoplankton biomass. We therefore suggest that the local maxima of phytoplankton observed in moorings off the Equator in the eastern Pacific might be not only the result of concentration mechanisms, but also the result of an increase in local production sustained by advected iron.  相似文献   

7.
Unusual large-scale phytoplankton blooms in the equatorial Pacific   总被引:1,自引:0,他引:1  
Unusual large-scale accumulations of phytoplankton occurred across 10,000 km of the equatorial Pacific during the 1998 transition from El Niño to La Niña. The forcing and dynamics of these phytoplankton blooms were studied using satellite-based observations of sea surface height, temperature and chlorophyll, and mooring-based observations of winds, hydrography and ocean currents. During the bloom period, the thermocline (nutricline) was anomalously shallow across the equatorial Pacific. The relative importance of processes that enhanced nutrient flux into the euphotic zone differed between the western and eastern regions of the blooms. In the western bloom region, the important vertical processes were turbulent vertical mixing and wind-driven upwelling. In contrast, the important processes in the eastern bloom region were wave-forced shoaling of nutrient source waters directly into the euphotic zone, along-isopycnal upwelling, and wind-driven upwelling. Advection by the Equatorial Undercurrent spread the largest bloom 4500 km east of where it began, and advection by meridional currents of tropical instability waves transported the bloom hundreds of kilometers north and south of the equator. Many processes influenced the intricate development of these massive biological events. Diverse observations and novel analysis methods of this work advance the conceptual framework for understanding the complex dynamics and ecology of the equatorial Pacific.  相似文献   

8.
The seasonality of primary productivity plays an important role in nutrient and carbon cycling. We quantify the seasonality of satellite-derived, oceanic net primary production (NPP) and its interannual variability during the first decade of the SeaWiFS mission (1998 to 2007) using a normalized seasonality index (NSI). The NSI, which is based upon production half-time, t(1/2), generally becomes progressively more episodic with increasing latitude in open ocean waters, spanning from a relatively constant rate of primary productivity throughout the year (mean t(1/2) ~5 months) in subtropical waters to more pulsed events (mean t(1/2) ~3 months) in subpolar waters. This relatively gradual, poleward pattern in NSI differs from recent estimates of phytoplankton bloom duration, another measure of seasonality, at lower latitudes (~40°S–40°N). These differences likely reflect the temporal component of production assessed by each metric, with NSI able to more fully capture the irregular nature of production characteristic of waters in this zonal band. The interannual variability in NSI was generally low, with higher variability observed primarily in frontal and seasonal upwelling zones. The influence of the El Niño–Southern Oscillation on this variability was clearly evident, particularly in the equatorial Pacific, where primary productivity was anomalously episodic from the date line east to the coast of South America in 1998. Yearly seasonality and the magnitude of annual production were generally positively correlated at mid-latitudes and negatively correlated at tropical latitudes, particularly in a region bordering the Pacific equatorial divergence. This implies that increases of annual production in the former region are attained over the course of a year by shorter duration but higher magnitude NPP events, while in the latter areas it results from an increased frequency or duration of similar magnitude events. Statistically significant trends in the seasonality, both positive and negative, were detected in various patches. We suggest that NSI be used together with other phenomenological characteristics of phytoplankton biomass and productivity, such as the timing of bloom initiation and duration, as a means to remotely quantify phytoplankton seasonality and monitor the response of the oceanic ecosystem to environmental variability and climate change.  相似文献   

9.
A one-dimensional ecosystem model with two explicit size classes of phytoplankton was developed for the NE subarctic Pacific to investigate variations in the export of organic particles to the ocean interior due to potential changes in the environment. Specifically, the responses of the planktonic ecosystem to permanent removal of iron limitation and to warming (of 2 and 5 °C) were explored. The ecosystem model consists of five components (small and large phytoplankton, microzooplankton, detritus and nitrogen), and includes grazing by mesozooplankton that varies in time according to long-term observations at Ocean Station Papa (OSP). The model addresses the role of iron limitation on phytoplankton growth and includes temperature dependence of physiological rates. The ecosystem model was forced with annual wind and solar heating from OSP. The model best reproduced the low chlorophyll high nitrate conditions of the NE subarctic Pacific when both small and large phytoplankton were limited by iron such that their maximum specific growth rate was reduced by 10 and 70%, respectively. Sensitivity analysis showed that model results depended on the value of the iron limitation parameter of large phytoplankton (LFe-L) and the grazing parameters of micro- and mesozooplankton. To explore the effect of iron limitation, simulations were carried out varying the iron limitation parameters while maintaining the nitrogen flux at the base of the model constant and the grazing pressure by mesozooplankton unchanged. In the warming case, simulations were carried out increasing ocean temperatures by 2° and 5 °C applied only to the ecological components, the flux of nitrate at the base of the model was increased to obtain a steady annual cycle, and grazing by mesozooplankton remained constant. When compared with the standard case, model simulations indicated that both permanent removal of iron limitation and warming cause changes in food web structure and the carbon cycle. The response was more dramatic in the iron-replete case where the phytoplankton community structure in spring changed from one dominated by pico- and nanoplankton to one dominated by large phytoplankton, and primary production increased until it consumed all the external nutrient (N) supply to the upper layer. However, reducing iron deficiency actually led to lower annual primary production due to a decrease in the regeneration of nitrogen in the euphotic zone. These changes in food web structure influenced the magnitude, composition and seasonal cycle of sinking particles.  相似文献   

10.
The US Joint Global Ocean Flux Study (JGOFS) conducted a series of survey and process studies in part to understand the processes regulating primary productivity and carbon flux in the APFZ, which is a high-nutrient, low-chlorophyll (HNLC) region. We deployed a high-resolution array of 12 moorings (average horizontal spacing 30 km) equipped with bio-optical and physical sensors to study the temporal and spatial scales of biological and physical processes in the APFZ. The moorings collected data from November 1997 to March 1998, effectively observing the growing season. Estimates of chlorophyll and sun-stimulated fluorescence/chlorophyll (F/C) were derived from the bio-optical measurements. Each mooring showed a strong spring bloom beginning in early December as the upper ocean began to stratify, with chlorophyll levels nearly quadrupling. The time series, along with ship studies, suggest that phytoplankton were initially light-limited as a result of deep, late spring mixing, followed by intense zooplankton grazing or silicate limitation, which controlled the maximum chlorophyll concentration, and finally by iron limitation, which led to increasing photoadaptive stress. These results suggest that phytoplankton in the APFZ are regulated by a confluence of processes involving light, grazing, silicate, and iron, and that models comprising a single mechanism may not be sufficient. The spring bloom in the APFZ is a transient event, persisting for only a few weeks, and therefore it is difficult to draw conclusions from sporadic ship cruises. Moreover, its spatial scales are also small so that widely spaced hydrographic stations can easily overlook critical processes.  相似文献   

11.
A biogeochemical model of the tropical Pacific has been used to assess the impact of interannual variability in a western Pacific iron source on the iron-limited ecosystem of the central and eastern Pacific during the 1997–1998 El Niño. A reference simulation and two simulations with an iron source in the western Pacific have been performed. The two “source” simulations differed only in the temporal variability of the iron source. In the variable source simulation, the iron concentration in the source region was proportional to the velocity of the New Guinea Coastal Undercurrent (NGCUC). In the constant source simulation, the same time-averaged concentration of iron was imposed with no temporal variability. The variable source was designed to mimic variations of iron flux from the northeast slope of New Guinea to the NGCUC due to modulation of sedimentary iron resuspension as previously hypothesized. Through the comparison of these simulations, it appeared that: (i) an iron source in the NGCUC, regardless of its source variability, increases biomass in the eastern equatorial Pacific because of the greater eastward iron flux by the Equatorial Undercurrent and (ii) a variable NGCUC iron source does not change the temporal variability of eastern Pacific chlorophyll, and in particular the timing and intensity of the June 1998 bloom. To explain eastern Pacific biological variability, local rather than remote processes are needed, such as wind-driven upwelling, the local depth of the thermocline, tropical instability waves and biological processes such as high grazing pressure. Therefore, while the western Pacific sources of dissolved iron are important in our model to sustain annually integrated equatorial Pacific production, they are unlikely to strongly constrain the timing of blooms in the central and eastern Pacific such as during the 1998 La Niña.  相似文献   

12.
Changes in the sea surface heights (SSH) and geostrophic currents along the eastern boundaries of the Pacific (North, Central and South America) are examined during the 1997–1998 El Niño using altimeter data and proxy winds. These show that ‘symmetric’ SSH signals left the equator and propagated into both Hemispheres in two episodes, with primary periods of high equatorial SSH during May–July and October–December 1997. These are the ‘distant signals’ from the mid-latitude perspective. As the signals spread poleward in each Hemisphere, their loss of symmetry demonstrates the degree to which they were altered by topographic features, local winds, and/or local currents. The first four EOFs are calculated for 2-D SSH fields in 10° wide strips along the eastern margins (60°N–60°S) and extending out along the equator from the coast to 110°W. These account for approximately 40% of the overall variability and represent the main features of the seasonal cycles and El Niño interannual variability. Snapshots of the 2-D SSH fields depict the structure of the El Niño signal at different phases of its evolution.  相似文献   

13.
Zooplankton and the oceanography of the eastern tropical Pacific: A review   总被引:2,自引:5,他引:2  
We review the spatial and temporal patterns of zooplankton in the eastern tropical Pacific Ocean and relationships with oceanographic factors that affect zooplankton distribution, abundance and trophic relationships. Large-scale spatial patterns of some zooplankton groups show broad coincidence with surface water masses, circulation, and upwelling regions, in agreement with an ecological and dynamic partitioning of the pelagic ecosystem. The papers reviewed and a new compilation of zooplankton volume data at large-scale show that abundance patterns of zooplankton biomass have their highest values in the upwelling regions, including the Gulf of Tehuantepec, the Costa Rica Dome, the equatorial cold tongue, and the coast of Peru.Some of the first studies of zooplankton vertical distribution were done in this region, and a general review of the topic is presented. The possible physiological implications of vertical migration in zooplankton and the main hypotheses are described, with remarks on the importance of the oxygen minimum zone (OMZ) as a barrier to both the vertical distribution and migration of zooplankton in the region. Recent results, using multiple-net gear, show that vertical distribution is more complex than previously thought. There are some well-adapted species that do live and migrate within the OMZ.Temporal patterns are reviewed and summarized with historical data. Seasonal variations in zooplankton biomass follow productivity cycles in upwelling areas. No zooplankton time series exist to resolve ENSO effects in oceanic regions, but some El Niño events have had effects in the Peru Current ecosystem. Multidecadal periods of up to 50 years show a shift from a warm sardine regime with a low zooplankton biomass to a cool anchovy regime in the eastern Pacific with higher zooplankton biomasses. However, zooplankton volume off Peru has remained at low values since the 1972 El Niño, a trend opposite to that of anchoveta biomass since 1984.Studies of trophic relations emphasize the difference in the productivity cycle in the eastern tropical Pacific compared to temperate or polar ecosystems, with no particular peaks in the stocks of either zooplankton or phytoplankton. Productivity is more dependent on local events like coastal upwelling or water circulation, especially in the equatorial countercurrent and around the equatorial cool-tongue. Micrograzers are very important in the tropics as are predatory mesozooplankton. Up to 70% of the daily primary productivity is consumed by microzooplankton, which thus regulates the phytoplankton stocks. Micrograzers are an important link between primary producers, including bacteria, and mesozooplankton, constituting up to 80% of mesozooplankton food. Oceanography affects zooplankton trophic relationships through spatial–temporal effects on primary productivity and on the distributions of metabolic factors, food organisms, and predators. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

14.
To fill temporal gaps in iron-enrichment experimental data and gain further understanding of marine ecosystem responses to iron enrichments, we apply a fifteen-compartment ecosystem model to three iron-enrichment sites, namely SEEDS (the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study; 48.5°N, 165°E) in the western North Pacific, SOIREE (the Southern Ocean Iron RElease Experiment; 61°S, 140°E) in the Southern Ocean, and IronExII (the second mesoscale iron enrichment experiment; 3.5°S, 104°W) in the Equatorial Pacific. The ecological effects of iron in the model are represented by changing two photosynthetic parameters during the iron-enrichment period. The model results successfully reproduce the observed biogeochemical responses inside and outside the iron patch at each site, such as rapid increases in plankton biomass and biological productivity, and decreases in surface nutrients and pCO2, inside the patch. However, the modeled timing and magnitude of changes differ among the sites because of differences in both physical environments and plankton species. After the iron enrichment, the diatom productivity is strongly controlled by light at SOIREE and by silicate at IronExII and SEEDS. Light limitation due to self-shading by the phytoplankton is significant during the bloom at all sites. Sensitivity analysis of the model results to duration of the iron enrichment reveals that long-term multiple infusions over more than a week would not be effective at SEEDS because of strong silicate limitation on diatom growth. Sensitivity of the model to water temperature shows that export production is higher at lower temperatures, because of slower recycling of particulate organic carbon. Therefore, the e-ratio (the ratio of export production to primary production) is inversely correlated with temperature, and the relationship can be described with a linear function. Through this study, we conclude that ecosystem modeling is a powerful tool to help design future iron-enrichment experiments and observational plans.  相似文献   

15.
This work quantifies the role of tropical instability waves (TIWs) in modulating nutrient and chlorophyll distributions in the equatorial Pacific through an analysis of satellite data and a case study of in situ observations. A TIW index is constructed to differentiate periods of strong and weak TIW activity. TIW impacts are first examined in monthly averaged satellite SST and chlorophyll data for three distinct regions north of the equator where TIWs are most active. The chlorophyll data are high-pass filtered to preserve the seasonal cycle and remove long-term trends. Although SST follows a predictable relationship with the TIW index, chlorophyll concentrations do not. Periods of high TIW activity are characterized by cooler SSTs but consistently low chlorophyll. A case study of individual TIW vortices demonstrates that their impact on nutrients and chlorophyll is a function of intensity. Strong TIWs drive reductions in nutrients and chlorophyll due to the subduction of nutrient-replete water north of the equator and the advection of nutrient-poor water toward the equator from adjacent to the upwelling zone. Weak TIWs do not drive these advective processes to the same degree, so retain elevated nutrients that fuel chlorophyll increases. The most positive effect on nutrients and chlorophyll by TIWs was observed during boreal winter, likely owing to thermocline topography. A shallower thermocline in combination with weak TIWs results in elevated nutrients and chlorophyll north of the equator. Given the variability associated with TIW intensity and season, generalizing TIW effects has proven difficult, but targeted Lagrangian studies will better characterize these dynamic features and their impact on elemental fluxes.  相似文献   

16.
Abstract-Heat content of the upper layer above the 20℃ isotherm in the tropical Pacific Ocean isestimated by using the sea temperature data set with a resolution 2°latitude×5°longitude (1980~1993)for the water depths (every 10 m) from 0 m to 400 m, and its temporal and spatial variabilities are an-alyzed. (1) The temporal variability indicates that the total heat in the upper layer of the equatorial Pa-cific Ocean is charcterized by the interannual variability. The time series of the equatorial heat anomaly5 months lead that of the El Nino index at the best positive lag correlation between the two, and theformer 13 months lag behind the latter at their best negative lag correlation. Therefore the equatorialheat content can be used as a better predictor than the El Nino index for a warm or cold event. In addi-tion, it is also found that less heat anomaly in the equator corresponds to the stronger warm events inthe period (1980~1993) and much more heat was accumulated in the 4 years including 1992/1  相似文献   

17.
Satellite ocean-color imagery and field spectroradiometer observations are used to assess the bio-optical signatures of two mesoscale features, a cyclone C1 and an 18°-water anticyclone A4, in the Sargasso Sea. Field determinations of upper layer bio-optical properties, such as the diffuse attenuation coefficient and remote-sensing reflectance spectra, show little statistically significant variations with distance to the eddy center for either eddy. This contrasts field observations showing many-fold higher phytoplankton pigment biomass at depth (and for A4 higher primary production rates at depth) than is typical for this region. The cyclone C1 does show a significant decrease in the depth of the 1% photosynthetically available radiation (PAR) isolume with increasing distance from eddy center while the anticyclone A4 shows no coherent signal vs. distance. Vertical profiles of bio-optical properties show consistent patterns where subsurface maxima are displaced higher inside the core of the cyclone C1 than in the surrounding waters while the highest values of the diffuse attenuation coefficient at 443 nm are observed within the core of anticyclone A4. Satellite observations of near-surface bio-optical properties show signals consistent with eddy physical characteristics, although the magnitude of these variations is very small, barely detectable by typical field measurement protocols. Mean values of bio-optical properties are higher within the cyclone compared with its periphery but not for the anticyclone. For both eddies, significant inverse correlations are observed between time series of bio-optical properties and eddy center sea-level anomaly. Consistent response to wind speed is also noted: following strong wind events, bio-optical parameters are elevated inside the anticyclone and are reduced inside the cyclone. These observations demonstrate that a combination of physical processes, including vertical eddy uplift, eddy horizontal advection, and eddy-scale Ekman pumping, contribute to the bio-optical imprint of mesoscale eddies. The contributions of these forcing mechanisms change over the period of observation, illustrating the limitations of inferring eddy bio-optical dynamics from short-term, field observations. The present analyses provide insights into the potential as well as the drawbacks of bio-optical techniques for probing the biological and biogeochemical impacts of open-ocean eddies.  相似文献   

18.
Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, data-based iron maximum in the western Pacific EUC using an ecosystem model forced by a global dynamical model. We imposed two source profiles of iron constrained by total acid-soluble iron measurements. Though the data for total acid-soluble iron included both dissolved and acid-soluble particulate iron species, we treated all of the total acid-soluble iron as if it was dissolved and bioavailable. A deeper (270 m) source was centered in the density horizon of the observed iron maximum and a shallower (180 m) source was located in the core of our model's EUC, where a dissolved iron maximum has been frequently postulated. These source runs were compared with a control run that contained no specific source of iron associated with the EUC. In the source runs elevated iron concentrations were simulated in the EUC across its entire zonal span, evident as a subsurface plume of dissolved iron slightly below the core of the EUC. In the control run there was no iron maximum associated with the EUC. Upwelling of iron-replete water in the central and eastern equatorial Pacific increased integrated primary productivity in the Wyrtki box (180°W:90°W, 5°S:5°N, 0:200 m) by 41% and 66% for the deeper and shallower iron perturbation, respectively. The source runs increased the realism of the zonal extent of HNLC conditions and the meridional distributions of biological productivity, relative to the control run. However, in the source simulations surface chlorophyll concentrations were too high by a factor of two and maximum surface nitrate concentrations were too low, relative to climatologies. The relative abundance of diatoms roughly doubled upon the input of additional iron, exceeding field observations. Though biogeochemical data are limited and we did not adjust parameters to optimize the model fits to observations, these results suggest that acid-soluble particulate iron supplied to the EUC in the western equatorial Pacific is unlikely to be entirely bioavailable.  相似文献   

19.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

20.
The effects of tropical instability waves (TIW) within the eastern equatorial Pacific during the boreal fall of 2005 were observed in multiple data sets. The TIW cause oscillations of the sea surface temperature (SST), meridional currents (V), and 20 °C isotherm (thermocline). A particularly strong 3-wave packet of ~15-day period TIW passed through the Galápagos Archipelago in Sep and Oct 2005 and their effects were recorded by moored near-surface sensors. Repeat Argo profiles in the archipelago showed that the large temperature (>5 °C) oscillations that occurred were associated with a vertical adjustment within the water column. Numerical simulations report strong oscillations and upwelling magnitudes of ~5.0 m d?1 near the Tropical Atmosphere Ocean (TAO) buoy at 0°, 95°W and in the Archipelago at 92°W and 90°W. A significant biological response to the TIW passage was observed within the archipelago. Chlorophyll a measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) increased by >30% above 1998–2007 mean concentrations within the central archipelago. The increases coincide with coldest temperatures and the much larger increases within the archipelago as compared to those of 95°W indicate that TIW induced upwelling over the island platform itself brought more iron-enriched upwelling waters into the euphotic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号