首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
This study presents an analysis of the CTD data and the turbulent microstructure data collected in 2014, the turbulent mixing environment above the Atlantic Water(AW) around the Chukchi Borderland region is studied.Surface wind becomes more efficient in driving the upper ocean movement along with the rapid decline of sea ice,thus results in a more restless interior of the Arctic Ocean. The turbulent dissipation rate is in the range of4.60×10~(–10)~(–3.31×10~(–9) W/kg with a mean value of 1.33×10~(–9) W/kg, while the diapycnal diffusivity is in the range of1.45×10~(–6)–1.46×10~(–5)m~2/s with a mean value of 4.84×10~(–6) m~2/s in 200–300 m(above the AW). After investigating on the traditional factors(i.e., wind, topography and tides) that may contribute to the turbulent dissipation rate, the results show that the tidal kinetic energy plays a dominating role in the vertical mixing above the AW. Besides, the swing of the Beaufort Gyre(BG) has an impact on the vertical shear of the geostrophic current and may contribute to the regional difference of turbulent mixing. The parameterized method for the double-diffusive convection flux above the AW is validated by the direct turbulent microstructure results.  相似文献   

2.
2012年夏季海南岛东岸上升流区的混合观测   总被引:1,自引:0,他引:1  
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity K_ρ is O(10–6 m~2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to K_ρ≈O(10–4 m~2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.  相似文献   

3.
A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10–2 m2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10–6 m2/s), the eddy diffusivity increased with depth, and its largest value was O(10–3 m2/s).  相似文献   

4.
The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea(SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach ~10~(–4)m~2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography. In contrast, the influence of the wind-induced nearinertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.  相似文献   

5.
Rainfall effect on wind waves and the turbulence beneath air-sea interface   总被引:1,自引:0,他引:1  
Rainfall effects on wind waves and turbulence are investigated through the laboratory experiments in a large wind-wave tank. It is found that the wind waves are damped as a whole at low wind speeds, but are enhanced at high wind speeds. This dual effect of rain on the wind waves increases with the increase of rain rate, while the influence of rainfall-area length is not observable. At the low wind speed, the corresponding turbulence in terms of the turbulent kinetic energy (TKE) dissipation rate is significantly enhanced by rain- fall as the waves are damped severely. At the high wind speed, the augment of the TKE dissipation rate is suppressed while the wind waves are enhanced simultaneously. In the field, however, rainfall usually hin- ders the development of waves. In order to explain this contradiction of rainfall effect on waves, a possibility about energy transfer from turbulence to waves in case of the spectral peak of waves overlapping the inertial subrange of turbulence is assumed. It can be applied to interpret the damping phenomenon of gas trans- fer velocity in the laboratory experiments, and the variation of the TKE dissipation rates near sea surface compared with the law of wall.  相似文献   

6.
In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.  相似文献   

7.
The tide-induced net advective salt flux in well-mixed estuaries consists of five terms according to the method from Kjerfve.The term resulted from the vertical variation in salinity can be negligible in well-mixed estuaries with four tide-induced salt flux terms,known as F1?F4.To explore the effects of wind on these salt fluxes,the current-salinity analytical model combined with the perturbation analysis is extended by including wind.Analytical expressions for the four salt fluxes are derived separately in the present model.Under the assumption that only the M2 tidal component is accounted for and the salt flux generated by diffusion is not studied,the tide-induced net advective salt flux Qsx is in the seaward direction without the wind effect.By applying the Western Scheldt estuary case,the wind influence on the tidal advection salt flux(TASF)distribution in the F4 term was investigated.The phase difference between zero-order velocity and first-order salinity(Δφ)at the surface layer of the estuary is larger than 90°and smaller than 90°at the bottom layer,which leads to landward TASF in the surface layer and seaward TASF in the bottom layer.The distribution ofΔφis not uniform in the horizontal direction with wind included,which differs from the result without wind.In the case of seaward wind with the speed of 18 m/s,the decrease in the zeroth-order velocity phase(φu)at the surface layer is larger than that of the first-order salinity phase(φs)downstream,which leads to an abnormal seaward TASF in this region.Owing to the surface stress caused by wind,the Stokes compensation flow in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is opposite.Thus,the first-order velocity in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is also opposite.The first-order salinity also increases/decreases with the increase of landward/seaward wind,while the upstream salinity tends to zero.Therefore,the tide-induced net advective salt flux Qsx increases/decreases with the increase of the landward/seaward wind,which is contrary to the usual recognition.  相似文献   

8.
Effects of Stokes production on summer ocean shelf dynamics   总被引:1,自引:0,他引:1  
A two-dimensional numerical model,which is configured on the basis of Princeton ocean model(POM),is used to study the effect of Stokes production(SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer.The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure submodel.Results reveal that the intensity of wind-driven upwelling fronts near the sea surface is weakened by the SP-associated turbulent kinetic energy input.The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distribution of upwelling.In addition,the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the upper mixed layer(ML) under strong winds.  相似文献   

9.
Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing,heat and gases exchange across air-sea interface.The energy loss from wave breaking and the bubble plume penetration depth are estimated.As a consequence,the vertical distribution of the turbulent kinetic energy(TKE),the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided.It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface.High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than υwl(=κuwz),the value predicted for the wall layer scaling close to the surface,where uw is the friction velocity in water,κ with 0.4 is the von Kármán constant,and z is the water depth,and the strength of the eddy viscosity depends both on wind speed and sea state,and decays rapidly through the depth.This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer,well above the classical values expected from the similarity theory.Deeper down,however,the effects of wave breaking on the vertical mixing become less important.  相似文献   

10.
Based on the comprehensive collection of the field observed salinity of the Bohai Sea (BHS) and the northern Huanghai Sea (NHS) from the 1950s to the present,the patterns of 10-years-averaged salinity at the different layers in the recent five decades (the 1950s,the 1960s,the 1970s,the 1980s and the 1990s) are obtained by the spatial-temporal interpolation technique with the scrupulous data quality control in this study.Then,by combining the spatial-temporal interpolation technique with successive correction method,the annual distributions of salinity both in the BHS and in the NHS are obtained as well.The data analyses indicate that the overall salinity in the BHS and the NHS increases from the 1960s till the present,with the increase of annual mean salinity of 0.04 psu from the 1950s,and the maximum increase rate of salinity is about 0.14 psu/a in the Bohai Bay.The high salinity tongue extended significantly from the NHS into the BHS.The intensified eastern wind field is related to the western intrusion of the NHS warm current,which probably leads to the moving forward of the high salinity water mass into the BHS.However,it is rather different from the salinity distribution characteristics between the 1950s and the 1960s.The extensive precipitation in the 1960s could lead to an increase in the discharge of the Huanghe River,which might result in the decrease of salinity in the BHS.But the salinity isoline of 32 in the NHS still extended significantly into the BHS in the 1960s.Since the 1980s,the patterns of salinity distribution have changed thoroughly.The salinity in the central area of the BHS was low,while the salinity in the Bohai Bay and the Liaodong Bay was higher than the other regions with its horizontal salinity gradient decreasing in the 1980s.The Empirical Orthogonal Function Analysis (EOF) is also conducted to study the interannual salinity variability of the BHS and the NHS.The correlation coefficient between the time coefficient series of the main mode and the Huanghe River discharge can reach -64.57%.It can be concluded that salinity variation of the BHS and the NHS has strong negative correlation with the Huanghe River discharge.  相似文献   

11.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

12.
The frequency spectrum of surface elevations in the presence of wind waves is well known. On this basis, one can estimate the frequency spectrum of vertical velocities in sea-surface waves. Owing to liquid incompressibility, the spectrum of horizontal velocities should have the same frequency dependence. The use of the dispersion equation for waves on the surface of a heavy liquid allows one to obtain to the spatial spectrum of velocities. Therefore, one can estimate the spatial structure function of the velocity field. For short waves and large depths, the structure function increases as r 1/2, where r is the distance between the points of observations. For long waves and shallow depths h, this increase is proportional to r. The coefficient of turbulent mixing K(r) of pollution spots of size r on the sea surface is now estimated as the product of the spot size and the rms difference of velocities. As a result, depending on r and h, the exponent in the r n dependence of K(r) may vary between 1.25 and 1.5. This outcome provides an explanation for a scatter in the values of the exponent n, a phenomenon that has been observed by many experimentalists.  相似文献   

13.
The paper presents a new model of electronic-vibrational kinetics of the products of ozone and molecular oxygen photodissociation in the terrestrial middle atmosphere. The model includes 45 excited states of the oxygen molecules O2(b 1, Σ g + ,v= 0−2), O2 (a 1Δ g , v= 0−5), and O2(X 3Σ g , v= 1−35) and of the metastable atom O (1 D) and over 100 aeronomic reactions. The model takes into account the dependence of quantum yields of the production of O2(a 1Δ g , v= 0−5) in a singlet channel of ozone photolysis in the Hartley band on the wavelength of photolytic emission. Taking account of the electronic-vibrational kinetics is important in retrieval of the vertical profiles of ozone concentration from measured intensities of the Atm and IR Atm emissions of the oxygen bands above 65 km and leads to an increase in the ozone concentration retrieved from the 1.27-μm emission, in contrast to the previous model of pure electronic kinetics. Sensitivity analysis of the new model is made for variations in the concentrations of atmospheric constituents ([O2], [N2], [O(3P)], [O3], [CO2]), the gas temperature, rate constants of the reactions, and quantum yields of the reaction products. A group of reactions that most strongly affect the uncertainty of ozone retrieval from measured intensities of atmospheric emissions of molecular oxygen O2(b 1Σ g + , v) and O2(a 1Δ g , v) has been determined. Original Russian Text ? V.A. Yankovsky, V.A. Kuleshov, R.O. Manuilova, A.O. Semenov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 557–569.  相似文献   

14.
Turbulent mixing in the central equatorial Pacific has been quantitatively evaluated by analyzing data from microstructure measurements and conductivity temperature depth profiler (CTD) observations in a meridionally and vertically large region. The result that strong turbulent mixing with dissipation rate ε (>O(10?7) W kg?1), continuing from sea-surface mixed layer to low Richardson number region below, in the area within 1° of the equator, shows that turbulent mixing has a close relationship to shear instability. ε > O(10?7) W kg?1 and turbulent diffusivity K ρ  > O(10?3) m2 s?1 were obtained from near-surface to 85 db at stations even southwardly beyond 3°S, where it is already far from the southern boundary (~2°S) of the Equatorial Undercurrent. Turbulence-induced heat flux and salinity flux were calculated, and both had their maxima in the equatorial upwelling region, though the former was downward and the latter was upward. Accordingly, vertical velocity in the upwelling region was estimated to be similar to the results derived by other methods. These fluxes and the vertical velocity suggest the critical importance of turbulent mixing in maintaining the well-mixed upper layer. Secondly, in the intermediate region (>500 db), turbulent eddies were investigated by applying Thorpe’s method to the CTD data. A large number of overturns were detected, with spatial-averaged K ρ (700–1,000 db) being 3.3 × 10?6 m2 s?1, and the corresponding K ρ-max reaching to O(10?4) m2 s?1 in the north (3°–13°N). The results suggest that, in the intermediate region, considerable turbulent mixing occurs and moderates the properties of the water masses.  相似文献   

15.
Estimates of vertical turbulent diffusion coefficient (K t ) in the Black Sea pycnohalocline have been obtained from data of simultaneous observations of seawater temperature, salinity, density, and horizontal current velocity, obtained in the northeastern part of the Black Sea during 2013–2014 with a moored Aqualog profiler. A Munk and Andersson (1948) type parameterization, adapted for the Black Sea environment, is proposed for calculating K t . Strong short-period (several days) variability of turbulent exchange is revealed, induced by vertical shear variations of the current velocity.  相似文献   

16.
The estimated characteristics of the atmospheric boundary layer, obtained by the simulation of wind wave fields using three versions of the WAM numerical model are compared with the well-known empirical dependences of drag coefficient C d on wind speed U 10 and wave age A, as well as with the dependence of dimensionless roughness height z n on inverse wave age u*/с р. Calculations carried out for several years in the areas of the Pacific and Indian oceans, based on the ERA-interim and CFSR wind reanalyses have shown good agreement between the model and empirical dependences C d (U 10) and C d (A). The range of estimated variability for z n (u*/с р ) has been found to be significantly less than empirical. It has been also found that estimated values of wind speed U 10W (t) are overestimated from 5 to 10% in all versions of WAM models compared with the input wind reanalysis U 10R (t) at the moments of appearance maximum values of wind U 10R (t). The reasons for the established features of the WAM model and their dependence on the model version are discussed.  相似文献   

17.
Instead of approximation formula ln(E(t)/E(0)) = [(a ? bt)t/(c + T)] commonly used at present for representing dependence of pressure of saturated streams of liquid water E upon temperature we suggested new approximation formula of greater accuracy in the form ln(E(t)/E(0)) = [(A ? Bt + Ct 2)t/T], where t and T are temperature in °C and K respectively. For this formula with parameters A = 19.846, B = 8.97 × 10?3, C = 1.248 × 10?5 and E(0) = 6.1121 GPa with ITS-90 temperature scale and for temperature range from 0°C to 110°C relative difference of approximation applying six parameter formula by W. Wagner and A. Pruß 2002, developed for positive temperatures, is less than 0.005%, that is approximately 15 times less than accuracy obtained with the firs formula. Increase of temperature range results in relative difference increasing, but for even temperature range from 0°C to 220°C it does not higher than 0.1%. For negative temperatures relative difference between our formula and a formula of D. M. Murphy and T. Koop, 2005, is less than 0.1% for temperatures higher than ?25°C. This paper also presents values of coefficients for approximation of Goff and Grach formula recommended by IMO. The procedure of finding dew point T d for known water steam pressure e n based on our formula adds up to solving an algebraic equation of a third degree, which coefficients are presented in this paper. For simplifying this procedure this paper also includes approximation ratio applying a coefficient A noted above, in the form T d (e n ) = \(\frac{{AT_0 }}{{A - \varepsilon }}\) + 0.0866?2 + 0.0116?10/3, where ? = ln(e n /E(T 0)). Error of dew point recovery in this ratio is less than 0.005 K within the range from 0 to 50°C.  相似文献   

18.
Fast repetition rate fluorometry (FRRf) provides a potential means to examine marine primary productivity; however, FRRf-based productivity estimations require knowledge of the electron requirement (K) for carbon (C) uptake (K C) to scale an electron transfer rate (ETR) to the CO2 uptake rate. Most previous studies have derived K C from parallel measurements of ETR and CO2 uptake over relatively short incubations, with few from longer-term daily-integrated periods. Here we determined K C by comparing depth-specific, daily ETRs and CO2-uptake rates obtained from 24-h on-deck incubation experiments undertaken on seven cruises in Ariake Bay, Japan, from 2008 to 2010. The purpose of this study was to determine the extent of variability of K C and to what extent this variability could be reconciled with the prevailing environmental conditions and ultimately to develop a method for determining net primary productivity (NPP) based on FRRf measurements. Both daily ETR and K C of the upper layer varied considerably, from 0.5 to 115.7 mmol e? mg Chl-a ?1 day?1 and 4.1–26.6 mol e? (mol C)?1, respectively, throughout the entire data set. Multivariate analysis revealed a strong correlation between daily photosynthetically active radiation (PAR) and K C (r 2 = 0.94). A simple PAR-dependent relationship derived from the data set was used for generating K C, and this relationship was validated by comparing the FRRf-predicted NPP with the 13C uptake measured in 2007. These new observations demonstrate the potential application of FRRf for estimating regional NPP from ETR.  相似文献   

19.
The current study was carried out from May 2014 to April 2015 to estimate the stock status of P. viridis in Marudu Bay. The gonad development was monitored by histological examination, while the population parameters including asymptotic length (L), growth coefficient (K), mortality rate (Z, F and M), exploitation level (E) and recruitment of P. viridis were estimated using the lengthfrequency data. Results of the current study demonstrated that P. viridis in Marudu Bay spawned throughout the year with two major peaks, one in April to May and another one in October to December. The recruitment pattern was continuous with the peak in May to June 2014, which corresponded to the first spawning peak in April. However, no significant recruitment was observed from the second spawning peak due to the difference in spawning timing between male and female populations. The estimated asymptotic length (L), growth coefficient (K), total mortality (Z), natural mortality (M), fishing mortality (F) and growth performance (ф) of P. viridis in Marudu Bay were estimate to be 117 mm, 0.97 yr-1, 4.39 yr-1, 1.23 yr-1, 3.16 yr-1 and 4.123, respectively. The exponent b of the lengthweight relationship was 2.4 and exploitation level (E) was 0.72. The high mortality, low condition indices and negative allometric of P. viridis in Marudu Bay is caused by a lack of suitable food in the surrounding water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号