首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotic recovery from the Late Devonian F-F mass extinction event in China   总被引:5,自引:5,他引:5  
The Frasnian-Famennian (F-F) mass extinction is one of the five great extinctions of marine life during the Phanerozoic. The F-F event killed most of the Devonian reefs, the characteristic Devonian corals, stromatoporoids, bryozoans, nearly all tentaculites, a few superfamilies of brachiopods, such as Atrypacea and Pentameracea and some important elements of goniatites, such as Manticoceras. The end-Frasnian was a phase of mass extinction. A large number of shelly benthos were killed by the F-F event. Early and middle Famennian was the survival interval. The marine faunas were very rare at that time. The late Famennian was the recovery interval. There appeared to have many new taxa in the Strunian stage. It lacked a radiation interval in Late Devonian Famennian because another event (the D-C mass extinction) happened at the Devonian-Carboniferous boundary. Several causes for the F-F mass extinction have been proposed by some geologists, which have been grouped into two broad types, terrestrial and extraterrestrial. The former is related to sea level changes, climate changes and anoxic water event. The latter is linked with some forms of meteorite impact. A large-scale eustatic change of sea level and black shales representing an anoxic environment has been invoked to explain one of the causes for the F-F mass extinction.  相似文献   

2.
The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.  相似文献   

3.
The Hangenberg Crisis at the Devonian–Carboniferous boundary is known as a polyphase extinction event that affected more than 45 % of marine and terrestrial genera. As the cause of this event is still debated, analyses were carried out on sedimentary samples from the Devonian–Carboniferous Pho Han Formation in northeastern Vietnam to reconstruct the paleoenvironment around the time of this event using stable carbon isotopes; total sulfur; manganese; vanadium; molybdenum; and sedimentary organic matter, such as dibenzothiophenes, cadalene, and regular steranes. These geochemical signatures provide a high‐resolution redox history for this section and show that transgression‐driven high primary productivity, possibly enhanced by terrestrial input, caused severe oxygen depletion along the continental margin of the South China block during the Hangenberg Crisis.  相似文献   

4.
Terminal Mesozoic “catastrophe”-type extinction models that advocate synchronous marine and terrestrial extinctions spanning short time intervals (a few days up to a few millennia) have a common foundation: the simultaneous terminations of geological ranges of some taxa of marine CaCO3-producing microplankton (and possibly the dinosaurs) at the end of the Cretaceous. Gartner and McGuirk [1] propose a new catastrophe theory that at the end of the Cretaceous fresh-brackish water from the Arctic Ocean spread over the surface of the world's oceans, causing global cooling, aridity, and the extinctions. Like other catastrophe models, this one also fails to address the possibility of hiatus control of ranges at the end of the Cretaceous; a well documented, seemingly nearly universal hiatus of variable and unknown duration separates Cretaceous and Tertiary strata. Documented terminal Cretaceous marine regression (perhaps 10 times more rapid than a typical regression according to Cooper [8] would have caused terrestrial erosion and stripping away of the latest Cretaceous stratigraphic record, thus truncating geological ranges along a seemingly planar datum. The terminal Cretaceous marine CaCO3 dissolution event would have had the same effect on ranges of marine planktonic CaCO3-producing microplankton (the event was a shallow-water phenomenon). The simultaneous terminations of geological ranges is thus possibly the result of hiatus control, and the terminal Cretaceous “catastrophe” an illusion. Attempts to use Cretaceous-Tertiary transition floras to support global cooling at the time of the extinctions are not based on sound stratigraphic foundations; realistic paleobotanical-climatic inferences can only be based on the precise correlation of the Cretaceous-Tertiary contact in marine and terrestrial stratigraphic sections, and these correlations have not been made with sufficient precision to support catastrophe theory. The much used “across the Cretaceous-Tertiary boundary” glosses over ignorance of the true terminal Cretaceous scenario, lost forever in most places by the destruction of the terminal Cretaceous stratigraphic record. For now, stable isotope paleotemperature data from marine strata that can be dated radiometrically provide the most reliable estimates of the Cretaceous-Tertiary transition climate; Boersma et al. [5] indicate global warming of deep and shallow oceans “across” the contact (and not surficial cooling only as is required by the spillover model). Older much-cited climate inferences based on leaf physiognomy are suspect in light of Dolph and Dilcher's [23] work that shows little correlation between leaf physiognomy and climate.  相似文献   

5.
Global warming, the most severe faunal mass extinction and the shift of biogeochemical cycles were observed in the ocean across the Permian-Triassic boundary about 252 million years ago, providing an analog to understanding the modern oceans. Along with the progressive global warming, the biogeochemical cycle was documented to show a shift from the decoupled processes of carbon, nitrogen and sulfur prior to the mass extinction to the coupled biogeochemical processes during faunal mass extinction. The coupled biogeochemical cycle was further observed to shift from the coupled C-N processes during the first episode of the faunal mass extinction to the coupled C-N-S processes during the second episode, diagnostic of the progressive development of more deteriorated marine environmental conditions and the more severe biotic crisis across the Permian-Triassic boundary. The biogeochemical cycles could thus be an indication to the progressive collapse of marine ecosystems triggered by the global warming in Earth history. In modern oceans, the coupled C-N cycle triggered by the global warming was observed in some regions. If these local C-N processes develop and expand to the global oceans, the coupled C-N-S processes might be brought into existence and the marine ecosystems are inevitable to suffer from complete collapse as observed at 252 million years ago.  相似文献   

6.
Determining the location of the Cretaceous-Paleogene(K-Pg) boundary in terrestrial strata is highly significant for studying the evolution of terrestrial ecosystems at the end of the Cretaceous(especially the extinction of non-avian dinosaurs). At present, research on terrestrial K-Pg boundaries worldwide is concentrated in the middle and high latitudes, such as North America and Northeast China. Although many studies have also been carried out in the Nanxiong Basin, located at low latitudes(which has become the standard for dividing and comparing the continental K-Pg stratigraphy in China), many researchers have proposed four possible boundaries from different perspectives. Therefore, the exact location remains to be determined. In this study, the total mercury(Hg) content, environmental magnetism, geochemistry, and other parameters for the samples collected near the four boundaries were determined and compared with existing records. Results indicated that: 1) The total Hg content significantly increased in the upper part of the Zhenshui Formation and Pingling part of the Shanghu Formation with sharp fluctuations. As per latest dating results of Deccan Traps, the significantly high Hg value was attributed to the Deccan Traps eruption. Boundary 1 was located in the middle of the Hg anomaly interval, which was consistent with the relationship between the global K-Pg boundary and time of volcanic eruption. 2) The reconstructed paleoclimate evolution curve revealed that the red sediments in the basin recorded the late Maastrichtian warming event(66.2 Ma). Regarding the relationship between the four boundaries and this warming event, only boundary 1 was found to be closest to the real K-Pg boundary of the Nanxiong Basin.  相似文献   

7.
The end-Permian mass extinction not only severely distressed the Paleozoic ecosystems but also dramatically changed the sedimentary systems, resulting in a peculiar Early Triassic ecosystem and submarine environment during the recovery time following the mass extinction. The Lower Triassic is characteristic of the wide occurrence of various distinctive sediments and related sedimentary structures, such as flatpebble conglomerates, vermicular limestone, subtidal wrinkle structures, microbialite, carbonate seafloor fans, thin-bedded limestone and zebra limestone-mudstone. These sediments were common in the Precambrian to Early Ordovician marine settings, and then they occurred only in some extreme and unusual environments with the expansion of metazoan faunas. However, the Early Triassic witnessed an "anachronistic" reappearance of some distinctive sedimentary records in normal shallow marine settings. The study of these anachronistic facies should be of great importance for the understanding of the unique ecosystem and marine environment through the great Paleozoic-Mesozoic transition. The anachronistic facies characterized by vermicular limestone have been documented in many localities in South China and occur at various horizons of the Lower Triassic. Most types of re- ported distinctive sediments over the world have been observed in the Lower Triassic of South China. This provides an excellent opportunity for understanding the Early Triassic environment and its co- evolution with the biotic recovery. Among the anachronistic facies the vermicular limestone is the most characteristic and common distinctive sediments in the Lower Triassic of South China but has received relatively few investigations. Taking it as a case study, we will detail the variation of vermicular limestone and its stratigraphic distribution in the Three Gorges area, Hubei Province. The investigation on the vermicular limestone and other distinctive sediments from the Lower Triassic of South China further indicates that the appearance of anachronistic facies immediately following the mass extinction and the elimination from normal shallow marine facies with the radiation of Mesozoic marine faunas imply the natural response of the sedimentary systems and ecosystems to the great Paleozoic-Mesozoic transitional events and their induced harsh environments. Therefore, the ups and downs of the anachronistic facies may act as a proxy for the evolution of ecosystems independent of fossil analyses.  相似文献   

8.
Due to increasing development Southeast Asia’s coastlines are undergoing massive changes, but the associated impacts on marine habitats are poorly known. Singapore, a densely populated island city–state, is a quintessential example of coastal modification that has resulted in the (hitherto undocumented) loss of seagrass. We reconstructed the historic extent and diversity of local seagrass meadows through herbarium records and backwards extrapolation from contemporary seagrass locations. We also determined the current status of seagrass meadows using long-term monitoring data and identified the main threats to their presence in Singapore. Results show that, even though ∼45% of seagrass has been lost during the last five decades, species diversity remains stable. The main cause of seagrass loss was, and continues to be, land reclamation. We conclude that strict controls on terrestrial runoff and pollution have made it possible for seagrass to persist adjacent to this highly urbanised city–state.  相似文献   

9.
K-Ar isotopic ages presented by Uysal et al. for illitic clay minerals from drill core samples were interpreted to date the Woodleigh impact event at 359±4 Ma, allegedly implicating Woodleigh in the Late Devonian mass extinction. However, only very equivocal evidence is presented by Uysal et al. to support a link between clay mineral paragenesis and impact-related features, and the K-Ar ages reveal a distribution that is essentially a continuum between 308 and 364 Ma. The ‘age’ computed by Uysal et al. is based on an average of the five oldest ages within this group, which has no geological or statistical basis. The stratigraphic age constraints considered by Uysal et al. to be consistent with this age are much weaker than acknowledged, and the impact could have been much older than mid-Devonian. The size of the Woodleigh crater is poorly constrained (and the subject of an ongoing controversy); Uysal et al.’s suggestion of 120 km diameter is probably overestimated by a factor of two, in which case a link to any mass extinction is unlikely.  相似文献   

10.
Ocean anoxia has been widely implicated in the Permian-Triassic extinction.However,the duration and distribution of the ocean anoxia remains controversial.In this study,the detailed redox changes across the Permian-Triassic boundary(PTB)in the shallow platform interior at Great Bank of Guizhou(GBG)has been reconstructed based on the high-resolution microfossil composition and multiple paleo-redox proxies.The shallow platform is characterized by low sulfur(total sulfur(TS)and pyrite sulfur(Spy))concentrations,low Spy/TOC ratios,and low DOP values before the mass extinction,representing oxic conditions well.Following the mass extinction,the shift of multiple geochemical proxies,including high Spy/TOC ratios and DOP values,indicates dysoxic-anoxic conditions in shallow ocean.Furthermore,we reconstruct the transition of the redox conditions of Nanpanjiang Basin:the intense volcanic eruptions,which release huge CO2 and SO2 before the mass extinction,provoke the temperature rising and the collapse of terrestrial ecosystem.As a result,the increased weathering influx causes the carbon isotopic negative excursion and the expansion of the ocean oxygen minimum zone(OMZ).When the OMZ expanded into the photic zone,the episodic H2S release events enhance the pyrite burial at Dajiang section.Thus,intense volcanic eruptions,temperature increase,and oceanic hypoxia together lead to the PTB extinction.Recent studies show high temperature might be the key mechanism of the PTB extinction.In addition,this study confirms that the microbialites were formed in the dysoxicanoxic shallow water.  相似文献   

11.
Yoshitaka  Kakuwa 《Island Arc》1996,5(2):194-202
Abstract Stratigraphic productivity variations of radiolarians below the Permian-Triassic boundary are examined with Ishiga Diagrams in bedded chert sequences of southwest Japan. The diagrams of two different outcrops, drawn from the thickness variation of chert beds, show common stratigraphic variation, which indicates the diagram is a useful tool for correlation of bedded chert sequence. The common stratigraphic productivity variation is also well correlated to a compiled δ13C excursion of shallow carbonate sequences. Bedded chert records a dramatic extinction event in a shallow surface zone of oceans below the Permian-Triassic boundary. The Permian-Triassic mass extinction is divided into three intervals based on the Ishiga Diagrams, the stratigraphic lithological variation of bedded chert sequences, and the δ13C curve. The preceding extinction interval in the late Djulfian stage was not as serious an event and the biosphere soon recovered. The event of the main extinction interval commenced in the Dorashamian stage and caused a serious destruction of the biosphere. An event of the aftermath interval during the Early Triassic caused a delay in the recovery from the main extinction interval.  相似文献   

12.
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic.About 95%species,82%genera,and more than half families became extinct,constituting the sole macro-mass extinction in geological history.This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem,prompted its transition to Mesozoic ecosystem,and induced coal gap on land as well as reef gap and chert gap in ocean.The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere.The event sequence at the Permian-Triassic boundary(PTB)reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass extinction and the intimate relationship between them.The severe global changes coupling multiple geospheres may have affected the Pangea integration on the Earth’s surface spheres,which include:the Pangea integration→enhanced mountain height and basin depth,changes of wind and ocean current systems;enhanced ocean basin depth→the greatest Phanerozoic regression at PTB,disappearance of epeiric seas and subsequent rapid transgression;the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism;two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap(259–251 Ma)→global warming and mass extinction;continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation;enhanced weathering and CH4emission→negative excursion ofδ13C;mantle plume→crust doming→regression;possible relation between the Illawarra magnetic reversal and the PTB extinction,and so on.Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration.Subduction,delamination,and accumulation of the earth’s cool lithospheric material at the"D"layer of CMB started mantle plume by heat compensation and disturbed the outer core thermo-convection,and the latter in turn would generate the mid-Permian geomagnetic reversal.These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian,and probably finally the mass extinction at the PTB.  相似文献   

13.
Recent dramatic acceleration, thinning and retreat of tidewater outlet glaciers in Greenland raises concern regarding their contribution to future sea-level rise. These dynamic changes seem to be parallel to oceanic and climatic warming but the linking mechanisms and forcings are poorly understood and, furthermore, large-scale ice sheet models are currently unable to realistically simulate such changes which provides a major limitation in our ability to predict dynamic mass losses. In this paper we apply a specifically designed numerical flowband model to Jakobshavn Isbrae (JIB), a major marine outlet glacier of the Greenland ice sheet, and we explore and discuss the basic concepts and emerging issues in our understanding and modelling ability of the dynamics of tidewater outlet glaciers. The modelling demonstrates that enhanced ocean melt is able to trigger the observed dynamic changes of JIB but it heavily relies on the feedback between calving and terminus retreat and therefore the loss of buttressing. Through the same feedback, other forcings such as reduced winter sea-ice duration can produce similar rapid retreat. This highlights the need for a robust representation of the calving process and for improvements in the understanding and implementation of forcings at the marine boundary in predictive ice sheet models. Furthermore, the modelling uncovers high sensitivity and rapid adjustment of marine outlet glaciers to perturbations at their marine boundary implying that care should be taken in interpreting or extrapolating such rapid dynamic changes as recently observed in Greenland.  相似文献   

14.
A Permian-Triassic (P-Tr) boundary section of continuous carbonate facies, which well recorded the biotic and environmental processes through the great P-Tr transition in the shallow non-microbialite carbonate facies, has been studied in Yangou, Leping County, Jiangxi Province. The P-Tr sequence is well correlated with the Meishan section according to the conodont biostratigraphy and the excursion of carbon isotopes. A series of high-resolution thin-sections from the P-Tr boundary carbonate rocks at the Yangou section are studied to explore the interrelation between environmental change and biological evolution during the transitional time. Six microfacies have been identified based upon the observation of the thin-sections under a microscope on the grains and matrix and their interrelation. Combined with the data of fossils and carbon isotopes, Microfacies 4 (MF-4), coated-grain-bearing foraminifer oolitic sparitic limestone, and Microfacies 6 (MF-6), dark shelly micritic limestone, should be the different responses to the two episodes of mass extinction and environmental events that can be correlated throughout South China and even over the world. The oolitic limestone of MF-4 is the first finding from the latest Permian strata in South China and it might be a proxy of an unusual environmental condition of high pCO2, low sulfate concentration and of microbial blooming in the aftermath of the latest Permian mass extinction. The micritic limestone of MF-6 containing rich micro-gastropods and ostracods probably represents the blooming event of disaster taxa in the earliest Triassic environment. The microfacies analysis at the Yangou section can well reveal the episodic process of the biological evolution and environmental change in the shallow non-microbialite carbonate facies throughout the great P-Tr transition, thus the Yangou section becomes an important complement to the Meishan section.  相似文献   

15.
《Marine pollution bulletin》2012,65(12):2630-2638
The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe’s seas are fully mapped and increasing knowledge and application raise further issues to be resolved.This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2) biology; (3) terminology; (4) mapping; and (5) future development. The workshop ended with a declaration from the attendees, with recommendations to the EEA and European Topic Centre on Biological Diversity, to take into account the outputs of the workshop, which identify weaknesses in the current classification and include proposals for its modification, and to devise a process to further develop the marine component of the EUNIS habitat classification.  相似文献   

16.
The paper presents results of detailed magnetomineralogical and microprobe studies of sediments at the Cretaceous/Paleogene (K/T) boundary in two epicontinental sections in the Eastern Alps (Austria), where deposits, including the K/T boundary, outcrop along the Gams River and its tributaries. K/T boundary layers in these sections are similar in the set of such magnetic minerals as iron hydroxides, ferrospinels, hemoilmenite, titanomagnetite, magnetite, hematite, and metallic iron. However, the boundary layer in the Gams-1 section is distinguished by the presence of metallic nickel and its alloy with iron and by the absence of iron sulfides, whereas nickel has not been discovered in the Gams-2 section, which, however, contains iron sulfides of the pyrite type. Therefore, these minerals occur locally. It is suggested that enrichment in iron hydroxides of a common origin can be regarded as a global phenomenon inherent in the K/T boundary and unrelated to an impact event.  相似文献   

17.
Anthropogenic alteration of terrestrial shorelines can have pronounced effects on marine environments at the upland-marsh boundary. Possible terrestrial development effects on several physical and biological variables of high-marsh habitats were examined along developed and undeveloped shorelines in an ocean-dominated, southeastern US estuary. Analyses of sediment characteristics suggested development of the upland boundary affected physical conditions within the high-marsh. For example, pore water salinities were greater along undeveloped shorelines during a non-drought period even after rain events. Significant floral and faunal differences also existed between shoreline treatments. Black needle rush stems were significantly taller and marsh periwinkle densities significantly greater, but eastern coffee bean snail densities were significantly reduced along developed shorelines. Benthic infaunal community abundance and composition also were significantly different between shoreline treatments with sand fly larvae, human pest precursors, either only present or present in greater densities along developed shorelines. Sediment respirometry experiments indicated significant differences in heterotrophic and autotrophic processes occurring between shoreline treatments. Greater sediment surface temperatures along developed shorelines provided one possible mechanism driving high-marsh responses to boundary alteration. The history and extent of shoreline development along with a tendency in ocean-dominated southeastern marshes to resist change likely influenced current ecological conditions within our high-marsh study areas. A greater understanding of the driving mechanisms producing localized effects on salt marshes and recognizing regional differences in marsh resistance to change will facilitate predictions of shoreline development consequences and help in proposing effective management strategies for coastal boundaries.  相似文献   

18.
Kenya     
The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5° S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25°C and 31°C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50–80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.  相似文献   

19.
Tong  Jinnan  Chu  Daoliang  Liang  Lei  Shu  Wenchao  Song  Haijun  Song  Ting  Song  Huyue  Wu  Yuyang 《中国科学:地球科学(英文版)》2019,62(1):189-222
The Triassic rocks are widespread in China, and both marine and terrestrial strata are well developed. The Triassic stratigraphic architecture of China is very complex in both spatial variation of the so-called "South Marine and North Continental", i.e. the southern areas of China occupied mostly by marine facies while the northern China by terrestrial facies during the Triassic Period, and temporal transition of the "Lower Marine and Upper Continental", i.e. the lower part of the Triassic System composed mainly of marine facies and the upper part of terrestrial strata especially in South China. Although the Global Stratotype Section and Point(GSSP) of the Permian-Triassic boundary is located in South China, the Triassic of China except for some marine Lower-Middle Triassic depositions shows significantly local characteristics and is hardly correlated with the global chronostratigraphic chart. Consequently, the Triassic of China contains not only the international research hotspots but also difficult points in stratigraphic study. This paper aims to present a brief review of the Triassic in China, including chronostratigraphy, biostratigraphy, magnetostratigraphy and chemostratigraphy, and summarize an integrated Triassic stratigraphic framework of China. Accordingly, a stratigraphic correlation is proposed for the lithostratigraphic sequences among the three tectono-paleogeographic stratigraphic regions. The comprehensive study indicates that ammonoids are the classic index fossils in Triassic biostratigraphy but conodonts are more advantageous in the study and definition of the Triassic chronostratigraphic boundaries. China still has the potential to optimize the GSSPs of the Induan-Olenekian boundary and Olenekian-Anisian boundary. The correlation of the Permian-Triassic boundary between marine and terrestrial facies might be achieved with the help of the Permian-Triassic "transitional bed" and its related biotic and environmental events in association with the biostratigraphic study of conchostracan, vertebrate and plant fossils. In addition, the carbon isotopes have been proved to be one of the powerful methods in marine Triassic stratigraphic study, whereas the oxygen and strontium isotopes may be additional important bridges to establish the correlation between the marine and terrestrial strata, but as yet lacking of relevant studies in terrestrial strata. Considering the most stratigraphic intervals of the Triassic and the terrestrial Triassic in China are difficult to be correlated to the global chart, the proposed Chinese(regional) Triassic chronostratigraphic chart of marine and terrestrial stages would be of importance to the study of Chinese Triassic stratigraphy and related aspects, but the stages must be conceptually in line with international standards and studied as soon as possible in order to finalize the definition.  相似文献   

20.
Diverse and abundant siliceous sponge spicules were found in the latest Permian beds, Dongpan and Ma'anying sections, South China, including 52 types and 85 forms. Further investigation on these spicules allows us to understand extinction patterns and processes of deep-water sponges. These sponge spicules rapidly decreased below the Permian/Triassic boundary (PTB), and the extinction rates reach up to 88%-90% for types and 88%-92% for forms. Their extinction pattern is a gradual one that consists of two stages: the first is characterized by a gentle and slow extinction speed and low extinction rate, and the second by sharp and fast extinction speed and high extinction rate. The morphological extinction process is involved in the disappearance first of the triaxons and tetraxons, then of the polyaxons and demas, and last of monaxons. In exterior structure extinction, the complex spicules with branches and spines became extinct more easily than did smooth spicules. After the end-Permian mass extinction, only five common and smooth forms survived: Oxeas A, Oxeas B, Strongles B, Oxy-orthpentactines and Oxy-orthohexactines A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号