首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

2.
柴波  殷坤龙  肖拥军 《岩土力学》2010,31(8):2501-2506
巴东新城区巴东组第3段(T2b3)内广泛分布软弱带,通过钻孔岩芯分析、地表调查、X射线衍射、电镜扫描和物理力学性质试验,研究软弱带的特征。白土坡和西壤坡库岸深300余米的监测孔显示,库岸斜坡巴东组第3段内发育有13层贯通的软弱带,表现为富含黏土质的软弱夹层、碎裂岩软弱带、溶蚀改造软弱带和软岩软弱带。软弱带的矿物成分以绿泥石、伊利石、石英和方解石为主,黏土矿物含量变化较大,多者可达70%。软弱带经历了层间剪切变形,并牵引周围岩体形成较宽的破劈理或碎裂岩带,其微观结构显示的擦痕及矿物定向排列线理,揭示了软弱带经历了顺层剪切滑动,并伴有重力蠕滑特征。软弱带物理力学试验显示;在反复剪切和地下水长期作用下,其剪切强度将大幅下降。这些特征说明,三峡水库全面蓄水后,软弱带在地下水长期作用下必将加剧库岸斜坡的深部形变,进而发生沿软弱带的深部蠕滑。  相似文献   

3.
三峡库区黄土坡滑坡滑带空间分布特征研究   总被引:3,自引:0,他引:3  
黄土坡滑坡是三峡库区地质条件最复杂的滑坡之一,因巴东县城在历史搬迁过程中曾坐落于该滑坡体上而备受关注。为揭示对黄土坡滑坡起控制作用的临江1号滑坡滑带空间分布和工程性质规律,根据野外大型试验场隧洞群直接揭露,结合钻孔、室内试验和现场监测手段,对滑带空间分布、厚度、物质组成、物理力学性质和变形规律等方面进行了研究,获得了较系统全面的创新成果。研究结果表明:临江1号滑坡中存在双层滑带,下层主滑带呈南高北低东高中低状,位置靠近滑坡东部;次级滑带靠近滑坡西部;临江1号滑坡主滑带物理力学参数在空间分布上呈现不均一性,滑带强度的黏聚力和内摩擦角值随着滑坡主滑方向从后缘到前缘呈递增趋势,而滑带中的黏粒和粉粒含量随着滑带从后缘到前缘的延伸同样有所增长。临江1号滑坡次级滑带变形速率受控于滑带分布,前缘滑带变形速率明显大于后缘速率。滑带变形响应随滑带位置不同受外界因素影响程度各异,前缘受库水位升降显著影响,中后部滑带变形主要受降雨影响。  相似文献   

4.
The present paper deals with the impact of shear deformation on the geometric arrangement of particles within the soil specimen, which is termed as the microfabric of soil. A series of compression and extension lubricated end triaxial tests are performed on cylindrical specimens of Kaolinite clay with two extreme microfabrics; dispersed and flocculated, which are obtained using slurry consolidation technique. Flocculated microfabric has random orientation of particles within the soil mass having face-to-edge particle contacts; however, dispersed microfabric has parallel orientation of particles containing face-to-face particle contacts. When the specimen is subjected to large stress levels during its shear deformation, the particle orientation and the geometric arrangement within the soil specimen gets affected due to the force acting on the clay platelets. The variation in microfabric of soil before and after shear deformation process is evaluated by obtaining X-ray diffraction patterns of the clay specimen at three different locations using standard X-ray diffractometer. The discussion includes an analysis of the orientation of soil particles located at shear banding zones of the clay specimens, which may be useful for understanding the strain localization development in clays.  相似文献   

5.
The current status of the kinematics and strain geometry of high-strain zone studies is briefly summarized. A general high-strain zone has a triclinic deformation path, and monoclinic shear zones are special end member cases. Fabrics observed in natural shear zones and theoretical considerations based on continuum mechanics are compatible with this conclusion. Non-steady deformation paths remain difficult to deal with, and may ultimately rely on a realistic mechanical treatment of high-strain zones which may be possible when our knowledge of the mechanical behavior of rocks under natural deformation conditions is improved. An examination of the phenomenon of slip partitioning in transpressional plate boundary regions shows that the bulk deformation path in the forearc area (trench-parallel high-strain zone) is generally triclinic. The Alpine Fault in the South Island of New Zealand provides an example of a currently active triclinic shear zone. The Southern Knee Lake shear zone of Manitoba, Canada, provides an Archean example of a triclinic shear zone.  相似文献   

6.
高压力下层间错动带残余强度特性和颗粒破碎试验研究   总被引:1,自引:0,他引:1  
赵阳  周辉  冯夏庭  邵建富  江权  卢景景  江亚丽  黄可 《岩土力学》2012,33(11):3299-3305
针对某水电站层间错动带的原状样与重塑样,模拟现场地应力条件,在试验法向应力高达10 MPa条件下开展了反复直剪试验。试验结果表明:原状样峰值强度高于重塑样,但强度下降较快,二者残余强度趋于一致;此外,试样发生了大规模的颗粒破碎,采用颗粒相对破碎势Br量化重塑样剪切面附近区域与非剪切面附近区域颗粒破碎程度,对比发现,前者颗粒破碎程度高于后者,且破碎机制不同;剪切面颗粒破碎是高压力下残余强度包线非线性的根本原因:剪切强度的下降(残余强度与峰值强度的比值)与Br和S2(试验前后小于粒径< 2 µm 颗粒含量的比值)呈线性关系,颗粒破碎导致的能量释放和不断产生的黏粒(< 2 µm)降低了剪切强度。  相似文献   

7.
金坪子滑坡是一个位于金沙江右岸、上距乌东德水电站约900 m、总体积约6.25×108 m3的具有典型蠕滑特点的滑坡。为了进一步弄清控制该滑坡活动模式的内在机理,通过不同黏粒含量下滑带土的反复剪切试验,研究了滑坡滑带土的残余、峰值强度特性,以期为同类滑坡的防护和治理提供参考依据。研究结果显示,随着黏粒含量的增加,滑带土应变软化现象更加明显;而滑带土残余强度、峰值强度随着黏粒含量的增加,呈现非线性降低规律,但降低幅度随正压力的增大而增大;同时,残余内摩擦角、峰值内摩擦角与黏粒含量存在良好线性负相关关系,而残余黏聚力与峰值黏聚力随黏粒含量增加呈波动性增大,但在黏粒含量40%处出现一定降低幅度。关于黏聚力的波动性降低趋势,究其原因可能在于黏粒周围强结合水的分布对滑带土强度特性,尤其是黏聚力存在临界影响。本文数据和结论对金坪子滑坡的防护和治理以及不同粒径下蠕滑滑坡失稳演化进程有重要的借鉴意义。  相似文献   

8.
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1–5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.  相似文献   

9.
Slip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays + silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gravel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance.  相似文献   

10.
We describe in detail the deformation structures and textures of a large-scale landslide body that developed in the Betto-dani Valley in northern central Japan. We studied the shape-preferred orientation of clasts and clay flakes and the development of internal shear planes within the slip zone of the landslide. The slip has an average rate of 5–10 cm/year under the overburden pressure of approximately 1.6 MPa; these values are similar to those of the proto-decollement zone of the Nankai accretionary prism in SW Japan. The anisotropy of magnetic susceptibility of samples obtained from the slip zone reveals that the long axes of clay flakes define an imbricate structure. The slip was due to a long-term periodical creep, which occurs during the thaw seasons with an average slip rate of 0.16–0.32 μm/min. During the creep, the long axes of grains including clay flakes in the slip zone are developed from parallel to perpendicular to the slip direction. The observed textures provide a clue to elucidate the deformation textures and process in the decollement zone of the Nankai prism.  相似文献   

11.
天台乡滑坡是川东典型的缓倾角红层基岩滑坡,对其滑带特征进行详细的研究有助于揭示缓倾角红层基岩滑坡的形成机制。物理性质实验证明,天台乡滑坡滑带土为可塑粉质黏土。X射线衍射分析表明,天台乡滑坡滑带土主要矿物成分为绿泥石、伊利石、石英、长石与方解石; 扫描电镜观察发现,滑带土微观结构以片状结构与定向排列结构为主,微孔隙发育。作滑带土的直接慢剪试验,获得强度为:c=9.2~10.7kPa; =10.4~12.3; 作滑带土三轴固结排水蠕变试验,获得蠕变强度为:c=18.1kPa; =8.0。天台乡滑坡滑带滑带土中绿泥石和伊利石含量多,导致滑带的抗剪强度与蠕变强度低,是天台乡滑坡产生的主要内因。  相似文献   

12.
Overburden soil beds situated above a fault are often deformed by propagation of bedrock thrusting from the fault during large earthquake. The deformed beds formed a triangular shear zone. This coseismic faulting often causes damage to underground tunnels located in the shear zone. The present research studies the deformation behavior of the overburden soil beds and the tunnel, the associated mechanism and the impact on the safety of tunnel linings induced by a large blind thrust slip. Based on sandbox experimental and numerical studies, it is found that results from numerical analysis are in agreement with the sandbox model tests with regard to growths of the shear zones within the soil beds, location of the tunnel in this shear zone and deformations of the tunnel. The potential major shear zone may be bent or bifurcated into two sub-shear zones owing to existence of a tunnel inside the shear zone. Furthermore, the occurrence of back-thrust faulting will threaten the safety of nearby structures. It was also identified that stiffness of the soil and the fault dip angles are among the major factors controlling the configuration of shear zones, the stresses within the soil, and the loads on tunnel linings. Based on the identified mechanisms, the strategies for hazard prevention are accordingly suggested and discussed.  相似文献   

13.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

14.
黏土颗粒形态不仅反映黏土的矿物组分,更是影响其物理力学性质的重要因素之一。为了研究物质组成对软黏土微宏观性质的影响,采用离散元方法对不同颗粒形态的软黏土试样进行三轴压缩模拟试验。首先,基于扫描电镜图像量化颗粒形态,对天然状态下黏土颗粒的方向角和凹凸度进行统计,引入球度和凹凸度作为颗粒形态的特征参数;然后,基于原生矿物的单粒结构和黏土矿物的片状结构特征,构造球体单粒及圆柱体、正方体、长方体的片状簇体;最后,基于三轴试验离散元模拟方法,分析软黏土颗粒形态对其宏观力学及微观特性的影响。结果表明:片状颗粒试样比球体颗粒试样的初始模量高,抗剪强度大,随加载其排列趋于水平向分布;加载初期,颗粒球度对初始弹性模量影响较明显,初始弹性模量随着球度增大而逐渐减小;加载后期,颗粒凹凸度对抗剪强度指标影响作用逐渐凸显,试样内摩擦角和黏聚力随着凹凸度增大而逐渐减小;微观结构上,颗粒形状对颗粒位移和旋转也有较大影响。  相似文献   

15.
INTRODUCTIONOverthelasttwodecadesconsiderableadvanceshavebeenmadetowardsrecognizingandunderstandingthetectonicsignificanceofd...  相似文献   

16.
墨江-元江镍金矿床是哀牢山构造-成矿带上一个十分典型和重要的矿床,在野外实测构造岩石地层层序、矿物学详细填图的基础上,采用X射线粉晶衍射分析、扫描电镜、电子探针微区分析及矿物-构造-地球化学等方法,对墨江镍金矿床中含金脆-韧性剪切构造带的物质组成进行详细研究。显微构造的矿物地球化学研究是一种构造筛分新方法。脆性构造主要表现为含镍金石英脉-硅质岩-黄铁矿硅质岩中普遍发育碎裂岩化及裂隙,碎裂岩化-裂隙构造是深源热流体叠加成矿的储矿构造和运移上升通道,脆性剪切变形过程中伴有粘土化蚀变,粘土矿物主要有铬水云母、铬高岭石、多水铬高岭石、绿铬高岭石、铬蒙脱石、铬迪开石、铬埃洛石和绿鳞石等。在含金脆-韧剪切构造带中,铬绢云母-铬水云母-铬伊利石系列和铬绿泥石的矿物具(脆)韧剪切变形特征,在韧剪切变形过程中伴有强烈的热流体以及H2O为主要组分的矿化剂作用。  相似文献   

17.
基于三维颗粒离散单元法,赋予颗粒相应的细观参数,并采用黏结发生在接触颗粒间有限范围内的模型来考虑冻土颗粒中冰的胶结作用,建立了冻结黏土三维离散元数值模型.在相同围压、不同温度和相同温度、不同围压下对冻结黏土的室内三轴试验进行数值模拟,对比了数值试验与室内测试的应力-应变曲线,两者吻合较好.数值模拟结果表明:围压增大会使得接触黏结逐渐失效,在剪切带中胶结冰的破坏区域将增大,而温度的降低则会产生相反结果,这些微观变化都将对冻结黏土的宏观力学变形产生较大影响,同时,细观参数对温度的依赖性也很明显.冻结黏土三轴试验微观变形离散元模拟思路及方法可为今后运用离散单元法研究冻土力学行为提供一定的参考.  相似文献   

18.
流态化运动是高速远程滑坡的主要运动形式,是揭示高速远程滑坡运动机理的重要基础。基于粒子图像测速(PIV)分析方法,采用物理模型试验对不同粒径组成条件下的颗粒流内部的速度分布、剪切变形及流态特征进行了研究,并对高速远程滑坡流态化运动特征进行了讨论分析。结果表明:碎屑流流态化运动特征与颗粒粒径呈显著的相关性,随着粒径的减小或细颗粒含量的增加,颗粒流底部相对于边界的滑动速度以及整体的运动速度均呈逐渐减小的趋势,颗粒流内部剪切变形程度增加,颗粒的运动形式由“滑动”向“流动”转变;当颗粒粒径较小或细颗粒含量较高时,颗粒流内部剪切速率增大的趋势在颗粒流底部更加显著,反映了粒径减小有助于促进颗粒流内部剪切向底部的集中;在同一颗粒流的不同运动阶段及不同纵向深度,其流态特征具有显著差别,颗粒流前缘及尾部主要呈惯性态,颗粒间以碰撞作用为主,而主体部分则主要呈密集态,颗粒间以摩擦接触作用为主;在颗粒流表面及底部,颗粒间相互作用方式主要是碰撞作用,中间部分则以摩擦作用为主;对于不同粒径的颗粒流,随着粒径的增大或粗颗粒含量的增加,颗粒流内部颗粒的碰撞作用加强,颗粒流整体趋于向惯性态转变。  相似文献   

19.
糜棱岩型金矿金元素丰度与构造变形的关系   总被引:12,自引:0,他引:12  
陈柏林 《矿床地质》2000,19(1):17-25
蚀变糜棱岩型金矿是一种成矿机制与放因素都与韧性剪切带及其糜棱岩密切相关的金矿床类型。研究表明:①深部韧性剪切变形是元素分异迁出区,未叠加蚀变矿化的糜棱岩变形越强,Au丰度就越低;②中浅层次变形域是Au元素聚集区,矿化发生于韧性剪切带糜棱岩抬升至较浅部位叠加了韧脆性变形阶段。构造变形超强的糜棱岩,越易叠加矿化,Au元素丰度越高;③强变形或者大构造并应力不仅是促使Au元素活化分异、形成含Au热液、使A  相似文献   

20.
宋晶  王清  张鹏  江小亮 《工程地质学报》2012,20(6):1042-1049
软土地基在真空预压过程中,受强大的真空吸力作用,产生固结压密。其中一类软土黏粒含量较大,排水固结过程中产生细颗粒迁移现象,令土体固结的同时细颗粒也积聚在排水板四周,形成泥膜,造成后期排水通道堵塞,降低了固结效率。本研究采用室内试验模拟吹填土排水固结过程,监测颗粒分布情况,探讨细颗粒迁移规律,从颗粒空间分布特征解释高黏性吹填土固结机理。研究证实,固结条件影响细颗粒迁移现象:自重沉淤固结期间,细颗粒迁移受边界条件及渗流路径影响; 加压固结期间,细颗粒迁移受附加荷载产生的垂直压力影响,随着土体含水量的减少,黏粒迁移趋势逐渐减弱,黏粒不再表现出明显的迁移趋势,土体中细颗粒分布从竖向条带状逐步转变为水平向条带状。同时,高黏性吹填土固结过程中,将土样未加分散剂测试得到的粉粒含量称为似粉粒,随着吹填土排水固结过程的持续,吹填土似粉黏比不断地增加。固结时间越长,似粉黏比随深度增加而减小的特征越明显; 与排水管水平距离较远的土体似粉黏比有所增大。似粉黏比作为吹填土固结过程的指标,与土体强度大小成正比,可间接反应强度变化规律,为确定流塑状态及软塑状态的高黏性吹填土固结程度提供了定性指标,直观地反映出土体固结程度。研究表明,随着固结排水过程的持续,排水速度减慢,吹填土粉黏比不断增加,固结程度迅速增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号