首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Numerical simulations of galaxy formation require a number of parameters. Some of these are intrinsic to the numerical integration scheme (e.g., the time-step), while others describe the physical model (e.g., the gas metallicity). In this paper we present results of a systematic exploration of the effects of varying a subset of these parameters on simulations of galaxy formation. We use N -body and 'Smoothed Particle Hydrodynamics' techniques to follow the evolution of cold dark matter and gas in a small volume. We compare a fiducial model with 24 different simulations, in which one parameter at a time is varied, focusing on properties such as the relative fraction of hot and cold gas, and the abundance and masses of galaxies. We find that for reasonable choices of numerical values, many parameters have relatively little effect on the galaxies, with the notable exception of the parameters that control the resolution of the simulation and the efficiency with which gas cools.  相似文献   

2.
3.
4.
5.
It is logically possible that early two-body relaxation in simulations of cosmological clustering influences the final structure of massive clusters. Convergence studies in which mass and spatial resolution are simultaneously increased cannot eliminate this possibility. We test the importance of two-body relaxation in cosmological simulations with simulations in which there are two species of particles. The cases of two mass ratios, √2:1 and 4:1, are investigated. Simulations are run with both a spatially fixed softening length and adaptive softening using the publicly available codes gadget and mlapm , respectively.
The effects of two-body relaxation are detected in both the density profiles of haloes and the mass function of haloes. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation.
The simulations that use adaptive softening are less affected by two-body relaxation and produce slightly higher central densities in the largest haloes. They run about three times faster than the simulations that use a fixed softening length.  相似文献   

6.
7.
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum.  相似文献   

8.
9.
10.
11.
12.
A model of supernova feedback in galaxy formation   总被引:3,自引:0,他引:3  
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1. Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems.  相似文献   

13.
We present a computer code written in c that is designed to simulate structure formation from collisionless matter. The code is purely grid-based and uses a recursively refined Cartesian grid to solve Poisson's equation for the potential, rather than obtaining the potential from a Green's function. Refinements can have arbitrary shapes and in practice closely follow the complex morphology of the density field that evolves. The time-step shortens by a factor of 2 with each successive refinement.
Competing approaches to N -body simulation are discussed from the point of view of the basic theory of N -body simulation. It is argued that an appropriate choice of softening length ε is of great importance and that ε should be at all points an appropriate multiple of the local interparticle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this requirement. We show that at early times and low densities in cosmological simulations, ε needs to be significantly smaller relative to the interparticle separation than in virialized regions. Tests of the ability of the code's Poisson solver to recover the gravitational fields of both virialized haloes and Zel'dovich waves are presented, as are tests of the code's ability to reproduce analytic solutions for plane-wave evolution. The times required to conduct a ΛCDM cosmological simulation for various configurations are compared with the times required to complete the same simulation with the ART, AP3M and GADGET codes. The power spectra, halo mass functions and halo–halo correlation functions of simulations conducted with different codes are compared.
The code is available from http://www-thphys.physics.ox.ac.uk/users/MLAPM .  相似文献   

14.
15.
16.
We discuss a heuristic model to implement star formation and feedback in hydrodynamical simulations of galaxy formation and evolution. In this model, gas is allowed to cool radiatively and to form stars at a rate given by a simple Schmidt-type law. We assume that supernova feedback results in turbulent motions of gas below resolved scales, a process that can pressurize the diffuse gaseous medium effectively, even if it lacks substantial thermal support. Ignoring the complicated detailed physics of the feedback processes, we try to describe their net effect on the interstellar medium with a fiducial second reservoir of internal energy, which accounts for the kinetic energy content of the gas on unresolved scales. Applying the model to three-dimensional, fully self-consistent models of isolated disc galaxies, we show that the resulting feedback loop can be modelled with smoothed particle hydrodynamics such that converged results can be reached with moderate numerical resolution. With an appropriate choice of the free parameters, Kennicutt's phenomenological star formation law can be reproduced over many orders of magnitude in gas surface density. We also apply the model to mergers of equal-mass disc galaxies, typically resulting in strong nuclear starbursts. Confirming previous findings, the presence of a bulge can delay the onset of the starburst from the first encounter of the galaxies until their final coalescence. The final density profiles of the merger remnants are consistent with de Vaucouleurs profiles, except for the innermost region, where the newly created stars give rise to a luminous core with stellar densities that may be in excess of those observed in the cores of most elliptical galaxies. By comparing the isophotal shapes of collisionless and dissipative merger simulations we show that dissipation leads to isophotes that are more discy than those of corresponding collisionless simulations.  相似文献   

17.
18.
19.
20.
We perform a spectrophotometric analysis of galaxies at redshifts z = 4–6 in cosmological smoothed particle hydrodynamics simulations of a Λ cold dark matter universe. Our models include radiative cooling and heating by a uniform ultraviolet (UV) background, star formation, supernova feedback, and a phenomenological model for galactic winds. Analysing a series of simulations of varying box size and particle number allows us to isolate the impact of numerical resolution on our results. Specifically, we determine the luminosity functions in B , V , R , i ' and z ' filters, and compare the results with observational surveys of Lyman break galaxies (LBGs) performed with the Subaru telescope and the Hubble Space Telescope . We find that the simulated galaxies have UV colours consistent with observations and fall in the expected region of the colour–colour diagrams used by the Subaru group. The stellar masses of the most massive galaxies in our largest simulation increase their stellar mass from   M ∼ 1011 M  at z = 6 to   M ∼ 1011.7 M  at z = 3. Assuming a uniform extinction of E ( B − V ) = 0.15, we also find reasonable agreement between simulations and observations in the space density of UV bright galaxies at z = 3–6, down to the magnitude limit of each survey. For the same moderate extinction level of E ( B − V ) ∼ 0.15, the simulated luminosity functions match observational data, but have a steep faint-end slope with α∼−2.0. We discuss the implications of the steep faint-end slope found in the simulations. Our results confirm the generic conclusion from earlier numerical studies that UV bright LBGs at z ≥ 3 are the most massive galaxies with E ( B − V ) ∼ 0.15 at each epoch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号