首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gary  G. Allen 《Solar physics》1997,174(1-2):241-263
An X-ray or EUV image of the corona or chromosphere is a 2D representation of an extended 3D complex for which a general inversion process is impossible. A specific model must be incorporated in order to understand the full 3D structure. We approach this problem by modeling a set of optically-thin 3D plasma flux tubes which we render these as synthetic images. The resulting images allow the interpretation of the X-ray/EUV observations to obtain information on (1) the 3D structure of X-ray images, i.e., the geometric structure of the flux tubes, and on (2) the internal structure using specific plasma characteristics, i.e., the physical structure of the flux tubes. The data-analysis technique uses magnetograms to characterize photospheric magnetic fields and extrapolation techniques to form the field lines. Using a new set of software tools, we have generated 3D flux tube structures around these field lines and integrated the plasma emission along the line of sight to obtain a rendered image. A set of individual flux-tube images is selected by a non-negative least-squares technique to provide a match with an observed X-ray image. The scheme minimizes the squares of the differences between the synthesized image and the observed image with a non-negative constraint on the coefficients of the brightness of the individual flux-tube loops. The derived images are used to determine the specific photospheric foot points and physical data, i.e., scaling laws for densities and loop lengths. The development has led to computer efficient integration and display software that is compatible for comparison with observations (e.g., Yohkoh SXT data, NIXT, or EIT). This analysis is important in determining directly the magnetic field configuration, which provides the structure of coronal loops, and indirectly the electric currents or waves, which provide the energy for the heating of the plasma. We have used very simple assumptions (i.e., potential magnetic fields and isothermal corona) to provide an initial test of the techniques before complex models are introduced. We have separated the physical and geometric contributions of the emission for a set of flux tubes and concentrated, in this initial study, on the geometric contributions by making approximations to the physical contributions. The initial results are consistent with the scaling laws derived from the Yohkoh SXT data.  相似文献   

2.
A recurrent H surge was observed on 7 October, 1991 on the western solar limb with the Meudon MSDP spectrograph. The GOES satellite recorded X-ray subflares coincident with all three events. During two of the surges high-resolutionYohkoh Soft X-ray Telescope (SXT) images have been taken. Low X-ray loops overlying the active region where the surges occurred were continuously restructuring. A flare loop appeared at the onset of each surge event and somewhat separated from the footpoint of the surge. The loops are interpreted as causally related to the surges. It is suggested that surges are due to magnetic reconnection between a twisted cool loop and open field lines. Cold plasma bubbles or jets squeezed among untwisting magnetic field lines could correspond to the surge material. No detection was made of either X-ray emission along the path of the surges or X-ray jets, possibly because of the finite detection threshold of theYohkoh SXT.  相似文献   

3.
We present a classification of magnetic reconnection during two current loop coalescence, which may be quite important for the physical process of both solar flares and coronal loop heating in the solar active region. It is suggested that different kinds of the current loop coalescence processes could be identified from the soft X-ray telescope(SXT) of the Yohkoh satellite and the magnetic field data in the active region.  相似文献   

4.
Willson  R. F.  Kile  J. N.  Rothberg  B. 《Solar physics》1997,170(2):299-320
The presence of coronal magnetic fields connecting active regions is inferred from decimetric observations of solar noise storms with the Very Large Array (VLA) and from soft X-ray images taken by Yohkoh. Temporal changes in the noise storms appear to be correlated with some soft X-ray bursts detected by both Yohkoh and the GOES satellite. Combined analysis of the radio and X-ray data suggests a re-arrangement of the coronal magnetic field during the onset of impulsive noise storm burst emission. On one day during the combined VLA–Yohkoh–GOES observations, two widely-separated active regions appear to be connected by a faint trans-equatorial 91 cm source as well as two distinct soft X-ray loops. The two active regions show anti-correlated fluctuations in decimetric radio emission. On another day of combined VLA–Yohkoh observations, a series of 91 cm noise storm bursts are observed along the major axis of the associated noise storm continuum. Time sequences of Yohkoh soft X-ray images show a contraction of coronal loops prior to the onset of this series of bursts and a corresponding increase in the X-ray flux in the apparent footpoint of the overarching loop containing the noise storm. These observations imply that energy from a realignment of the magnetic field is being transferred, possibly by accelerated particles, along loops connecting separated active regions on the Sun.  相似文献   

5.
6.
Falconer  D. A. 《Solar physics》1997,176(1):123-126
From a sample of 7 MSFC vector magnetograms of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total X-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (>250 G) and strongly sheared (shear angle >75°) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.  相似文献   

7.
We present multi-instrument observations of active region (AR) 8048, made between 3 June and 5 June 1997, as part of the SOHO Joint Observing Program 33. This AR has a sigmoid-like global shape and undergoes transient brightenings in both soft X-rays and transition region (TR) lines. We compute a magneto-hydrostatic model of the AR magnetic field, using as boundary condition the photospheric observations of SOHO/MDI. The computed large-scale magnetic field lines show that the large-scale sigmoid is formed by two sets of coronal loops. Shorter loops, associated with the core of the SXT emission, coincide with the loops observed in the hotter CDS lines. These loops reveal a gradient of temperature, from 2 MK at the top to 1 MK at the ends. The field lines most closely matching these hot loops extend along the quasi-separatrix layers (QSLs) of the computed coronal field. The TR brightenings observed with SOHO/CDS can also be associated with the magnetic field topology, both QSL intersections with the photosphere, and places where separatrices issuing from bald patches (sites where field lines coming from the corona are tangent to the photosphere) intersect the photosphere. There are, furthermore, suggestions that the element abundances measured in the TR may depend on the type of topological structure present. Typically, the TR brightenings associated with QSLs have coronal abundances, while those associated with BP separatrices have abundances closer to photospheric values. We suggest that this difference is due to the location and manner in which magnetic reconnection occurs in two different topological structures. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1013302317042  相似文献   

8.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

9.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

10.
The Soft X-ray Telescope (SXT) onboard Yohkoh often observed large-scale coronal loops connecting two active regions situated in opposite hemispheres. These are the trans-equatorial loop systems (TLSs). The formation mechanism of TLSs is not yet known. We analyzed a TLS observed simultaneously with Yohkoh/SXT and a coronagraph (SOHO/LASCO-C1). SOHO/LASCO-C1 observed loop expansion and eruption at the west solar limb. Yohkoh/SXT observed a rising motion (chromospheric evaporation) of hot and dense plasmas from the active regions located at the footpoints of the loop. Important results of our analyses are that (1) the loop eruption and the rising motion of the plasmas were simultaneous, (2) the TLS had a cusp-like appearance, and (3) the highest temperature region of the TLS was located above the bright loop seen in soft X rays. These observational results (loop expansion, eruption, and chromospheric evaporation) suggest that this bright (high-density) TLS was created by the same mechanism by which a solar flare occurs, namely, magnetic reconnection. In this paper, we propose a formation mechanism of the TLS that forms between two independent active regions.  相似文献   

11.
陈晓娟 《天文学报》2001,42(4):364-374
使用Yohkoh卫星上的SXT/HXT和Nobeyama射电日像仪(NoRH)观测资料,对1998年4月23日发生在日面东南边缘上的软X射线日冕物质抛射(CME)作了分析研究,结果表明,软X射线CME具有两个磁偶极源(MDSs)。在两个磁偶极源之间有一个磁容带(MCB)、一个中性电流片9NCS)和少有的激活源(ASs)。在磁容带被激活源变成磁能带期间,物质和能量都向NCS集中,这正是NCS形成的过程。当两磁偶极源被MEB接通时,NCS形成,并且CME发生,物质抛射不仅从NCS处升起,而且从整个MEB上升起,CME膨胀环具有两个足点,它们正是两个磁偶极源,膨胀环的头总是倾向于弱源的足点。头的轨迹是中性线,由中性线也可以确认NCS的位置。  相似文献   

12.
A three-dimensional coronal magnetic field is reconstructed for the NOAA active region 11158 on 14 February 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented which is approximately 1000 times faster than the original DBIE used on solar non-linear force-free field modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures as observed in the front-view (SDO/AIA) and the side-view (STEREO-A/B) images for the first time; they show very good agreement three-dimensionally. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the average misalignment angles in our model are at the same order as the state-of-the-art results obtained from reconstructed coronal loops. It is found that the observed coronal loop structures can be grouped into a number of closed and open field structures with some central bright coronal loop features around the polarity inversion line. The reconstructed highly sheared magnetic field lines agree very well with the low-lying sigmoidal filament along the polarity inversion line. This central low-lying magnetic field loop system must have played a key role in powering the flare. It should be noted that while a strand-like coronal feature along the polarity inversion line may be related to the filament, one cannot simply interpret all the coronal bright features along the polarity inversion line as manifestation of the filament without any stereoscopic information.  相似文献   

13.
The evolution of the soft X-ray and EUV coronal loops related to the April 15, 1998 solar flare–CME event is studied with multiwavelength observations including hard X-rays (BATSE), microwaves (NoRP, CNAO) and magnetograms (SOHO/MDI), as well as images from Yohkoh/SXT and SOHO/EIT at 195 Å. It is shown that: (1) two soft X-ray and EUV loops rose, crossed and turned bright, (2) near one footpoint of these loops, the background magnetic field decreased, (3) there were similar quasi periodic oscillations in the time profiles of hard X-ray and microwave emissions, which characterized the loop–loop coalescence instability, (4) after the loop–loop reconnection, two new loops formed, the small one stayed at the original place, and the large one ejected out as part of the constructed prominence cloud. Based upon these observations, we argue that the decrease of the background magnetic field near these loops caused them to rise and approach each other, and in turn, the fast loop–loop coalescence instability took place and triggered the flare and the CME.  相似文献   

14.
Malherbe  J. M.  Schmieder  B.  Mein  P.  Mein  N.  Van Drielgesztelyi  L.  Von Uexküll  M. 《Solar physics》1998,180(1-2):265-284
Using multi-wavelength observations obtained with the Tenerife telescopes (VTT and GCT) and with the Yohkoh satellite, we observed new emerging flux with an associated arch filament system (AFS) in the chromosphere and bright X-ray loops in the corona. We observed the change of connectivity of the X-ray loop footpoints which may be at the origin of the occurrence of a subflare. Densities, gas and magnetic pressures of cold AFS and hot loops were derived and discussed. The extrapolation of the photospheric magnetic field observed with the GCT in a linear force-free field assumption (constant ) shows that this region, in spite of having roughly a global potential configuration, consists of two systems of arch filaments. We found these two systems best fitted with two sheared magnetic topologies of opposite values of ± 0.1 Mm-1  相似文献   

15.
Aulanier  G.  Démoulin  P.  Schmieder  B.  Fang  C.  Tang  Y.H. 《Solar physics》1998,183(2):369-388
On 18 May, 1994, a subflare was observed in AR 7722 in X-rays by Yohkoh/SXT and in H at National Astronomical Observatory of Japan. The associated brightenings are due to small-scale magnetic energy release, triggered by parasitic fluxes emerging and moving at the edge of leading sunspots. Using the magnetohydrostatic equations derived by Low (1992), we model the magnetic field configuration by extrapolation of the Kitt Peak photospheric field, taking into account the effects of pressure and gravity. H flare kernels are shown to be located at computed separatrices associated with field lines which are tangent to the photosphere, namely 'bald patches (BPs). This is evidence that BPs can be involved in flares, and that current sheets can be dissipated in low levels of the solar atmosphere. The presence of dense plasma which is supported against gravity in the magnetic dips above BPs is correlated to dark elongated features observed in H. Mass flows in these flat fibrils are discussed in the context of energy release in the BP separatrices. The effect of the plasma on the computed magnetic configuration is shown to be of secondary importance with respect to the topology of the field.  相似文献   

16.
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.  相似文献   

17.
Van Driel-Gesztelyi  L.  Wiik  J.E.  Schmieder  B.  Tarbell  T.  Kitai  R.  Funakoshi  Y.  Anwar  B. 《Solar physics》1997,174(1-2):151-162
Observations of the post-flare loops after the X3.9 flare which occurred on 25 June, 1992 at 20:11 UT by the Yohkoh/SXT in X-rays, as well as in H obtained at 5 different observatories, have provided a unique, longest ever, set of data for a study of the relationship between the hot and cool post-flare loops as they evolve. At any given time, the altitude difference between the hot X-ray loops of 6–7× 106 K and the cool H loops of 1.5× 104 K is related to the expansion rate of the loop systems and their cooling time. Therefore, measurements of the expansion rate and relative height of hot and cool loops can provide direct observational values for their cooling times. We measured the altitude of hot and cool loops for 15 and 19 hours, respectively, and found that the cooling time increased as the density of the loops decreased. We found a reasonably good agreement between the observed cooling times and those obtained from model calculations, although the observed values were always somewhat longer than the theoretical ones. Taking into account evolutionary effects, we also found similar shapes and configurations of hot and cool loops during the entire observing period and confirmed that, at any time, hot loops are at higher altitude than cool loops, suggesting that cool loops indeed evolve from hot loops. These results were used to check the validity of the reconnection model.  相似文献   

18.
Choudhary  Debi Prasad  Gary  G. Allen 《Solar physics》1999,188(2):345-364
The high-resolution H images observed during the decay phase of a long-duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long-duration flare was observed in the region of low magnetic shear at the photosphere. The H loops activity started soon after the maximum phase of the flare. There were a few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45° to the east-west axis. Gradually, an increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H loops. The height of the H loops were derived by comparing them with the computed field lines. From the temporal evolution of the H loop activity, we derive the negative rate of appearance of H features as a function of height. It is found that the field lines oriented along one of the neutral lines were sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long-duration flare.  相似文献   

19.
探讨了复杂磁结构上空日冕物理状态与磁剪切的关系.结果表明在强磁场的磁中性线上方磁剪切会引起具有强电流和较强等离子体压力的低磁弧.这可解释Yohkoh 卫星的观测结果  相似文献   

20.
Zhang  J.  Gopalswamy  N.  Kundu  M. R.  Schmahl  E. J.  Lemen  J. R. 《Solar physics》1998,180(1-2):285-298
We present the measurement of magnetic field gradient in magnetic loops in the solar corona, based on the multi-wavelength Very Large Array observations of two transient microwave brightenings (TMBs) in the solar active region 7135. The events were observed at 2 cm (spatial resolution 2=) and 3.6 cm (spatial resolution 3=) with a temporal resolution of 3.3 s in a time-sharing mode. Soft X-ray data (spatial resolution 2.5=) were available from the Soft X-ray Telescope on board the Yohkoh satellite. The three-dimensional structure of simple magnetic loops, where the transient brightenings occurred, were traced out by these observations. The 2-cm and 3.6-cm sources were very compact, located near the footpoint of the magnetic loops seen in the X-ray images. For the two events reported in this paper, the projected angular separation between the centroids of 2 and 3.6-cm sources is about 2.3= and 3.1=, respectively. We interpret that the 2 and 3.6-cm sources come from thermal gyro-resonance emission. The 2-cm emission is at the 3rd harmonic originating from the gyro-resonance layer where the magnetic field is 1800 G. The 3.6-cm emission is at the 2nd harmonic, originating from the gyro-resonance layer with a magnetic field of 1500 G. The estimated magnetic field gradient near the footpoint of the magnetic loop is about 0.09 G km=1 and 0.12 G km=1 for the two events. These values are smaller than those observed in the photosphere and chromosphere by at least a factor of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号