首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by International Society for Rock Mechanics for measuring mode I fracture toughness of rocks. Subsequently, this specimen geometry has been widely extended to conduct mixed mode fracture tests on rocks as well. A straight through crack front during the fracturing process upon the root of the chevron notch is assumed in the testing principle, but has never been thoroughly evaluated before. In this study, for the first time, the progressive rock fracture mechanism of the CCNBD rock specimen under mixed mode loading is numerically simulated. Specimens under representative mixed mode loading angles are modelled; and the assumption of the straight through crack front growth is critically assessed. The results show that not only the notch tip but also the saw-cut chevron notch cracks during the experiments, yielding a prominent twisted front, far from being straight. The crack front never grows up to the root of the notch ligament and the straight through crack front assumption is never satisfied in the realistic rock fracture progress of this chevron notched specimen subjected to mixed mode loads. In contrast, the fracture progress features typical three-dimensional wing cracking towards the loading ends. The numerically observed progressive fracture mechanism reveals that the measuring principle of mixed mode fracture tests employing CCNBD specimens is significantly violated and the measures of both modes I and II fracture toughness are uncertain.  相似文献   

3.
4.
5.
Numerical and experimental studies were performed on a new fracture test configuration called the edge cracked triangular (ECT) specimen. Using several finite-element analyses, the fracture parameters (i.e., K I, K II, and T-stress) were obtained for different combinations of modes I and II. The finite-element results show that the ECT specimen is able to provide pure mode I, pure mode II, and any mixed-mode loading conditions in between. Also, a series of mixed-mode fracture experiments were conducted on Neiriz marble rock using the proposed specimen. Furthermore, the generalized maximum tangential stress (GMTS) criterion was used to predict the experimental results. The GMTS criterion makes use of a three-parameter model (based on K I, K II, and T) for describing the crack tip stresses. Due to the significant positive T-stresses that exist in the ECT specimen, typical minimum fracture toughness values were expected to be obtained when the ECT specimen is used. The direction of fracture initiation and the path of fracture growth were also obtained theoretically using the GMTS criterion, and good agreement was observed between the experimental fracture path and theoretical simulations. The fracture study of this specimen reveals that the ECT specimen can be also used in mixed-mode fracture studies of rock materials in addition to the conventional circular or rectangular beam test samples.  相似文献   

6.
Hydraulic fracture propagation is greatly influenced by mode-II fracture toughness since this is one of the factors which determine whether a fracture diverts. Direct measurement of rock fracture toughness is constrained by high cost, limited number of available cores and long turn around time. Therefore, to overcome these constrains, it is necessary to develop an effective mode-II fracture toughness test which can be used in a prediction analysis for deep rock formations. Consequently, a mode-II fracture toughness test system was designed for rocks using the straight-notched Brazilian disc (SNBD) test methodology. In the experiment, this system was used to test 20 rock samples from the WG oilfield. This enabled a fracture toughness prediction model to be established, based on an analysis of the test data. H341 acoustic, density and gamma-ray logging data were used to predict horizontal stresses and rock tensile strength. When combined with the mode-II fracture toughness prediction model, continuous values were predicted, which were successfully confirmed by field fracturing practices. It was confirmed, therefore, that this successful method met the need of providing continuous fracture toughness data during field fracturing operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号