首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
By combining continuous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationship with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships — simultaneous ground-based observations of the midday and evening-midnight sectors of the auroral oval—is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMFB Z is repeated occurrence of certain short-lived auroral structures which seem to move in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity, and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

2.
The first simultaneous (within 6 min) observations of the low altitude polar cusp regions in the conjugate hemispheres are reported here based on two events detected by the DMSP-F2 and F4 satellites within the same geomagnetic local time sector. It is found that the electron spectra in the cusp are identical in the opposing hemispheres. In one case the observed latitudinal location and extent of the cusps are the same at the two hemispheres. However, in the other case the location of the equatorward boundary of the cusp regions differs by about 2° with drastically different spatial features. It is also found that in one of the events the plasma sheet electron precipitation regions overlap with the cusp regions at lower latitude in both hemispheres. The poleward boundary of these overlapping regions is located at the same latitude on either hemisphere, suggesting that this is the latitude of the last closed field line and that the cusp electrons are present on both closed and open magnetic field lines.  相似文献   

3.
The polar cusps have traditionally been described as narrow funnel-shaped regions of magnetospheric magnetic field lines directly connected to magnetosheath, allowing the magnetosheath plasma to precipitate into the ionosphere. However, recent observations and theoretical considerations revealed that the formation of the cusp cannot be treated separately from the processes along the whole dayside magnetopause and that the plasma in regions like cleft or low-latitude boundary layer is of the same origin. Our review of statistical results as well as numerous case studies identified the anti-parallel merging at the magnetopause as the principal source of the magnetosheath plasma in all altitudes. Since effective merging requires a low plasma speed at the reconnection spot, we have found that the magnetopause shape and especially its indentation at the outer cusp is a very important part of the whole process. The plasma is slowed down in this indentation and arising multiscale turbulent processes enhance the reconnection rate.  相似文献   

4.
Assuming that the solar wind plasma is usually non-uniform over distances of 10,000 km or less, it is shown that filamentary plasma elements stretched out from the Sun can penetrate impulsively and become engulfed into the magnetosphere.The diamagnetic effects associated with these plasma inhomogeneities are observed in outer magnetospheres and magnetosheaths as dips or directional discontinuities in the magnetic field measurements. From the mean penetration distances of these diamagnetic plasma elements one can deduce a mean deceleration time, as well as an approximate value of the integrated Pedersen conductivity in the polar cusp of the Earth and Jupiter.  相似文献   

5.
We have studied the dayside magnetosphere structure and its Kp, AE and IMF-dependence using the magnetic data from IMP and HEOS satellites obtained during 1966–1972. An analysis of the field line configurations has been done on the basis of results of a least squares fitting of the model coefficients to the data subsets. The plots of the magnetopause subsolar point distance and of the polar cusp latitude vs Kp and AE have been obtained. A detailed study of the model field distribution has revealed a substantial difference in the polar cusp field line geometry between the cases of weak and strong geomagnetic activity. We find that this results in a considerable longitudinal extension of the isointensity contours of particle precipitation at ionospheric heights during disturbed periods with Kp ? 3 or AE ? 300 nT. The same effect has been detected for the data subsets corresponding to the IMF Bz < 0. In contrast, at quiet times the precipitation isolines are much closer to circles. We conclude therefore that the cleft-like structure of polar cusps pertains only to active periods and can be explained by a magnetic effect of enhanced Birkeland currents.  相似文献   

6.
The current status of the morphological properties of the variation of the earth's magnetic field known as Intervals of Pulsations with Rising Periods (IPRP) observed at the polar cusp stations Casey, Mirny and Heiss throughout 1978 is presented. They have the characteristic of a “whistle” with steadily falling tone. Comprehensive observational and dynamical morphological accounts of the IPRP phenomenon are presented including new analyses of polarisation, power spectra and digital sonograms. Simultaneously occurring IPRP at the two widely spaced stations Casey and Mirny are examined. In an accompanying paper (Cole et al., 1982) a theory which accounts for the properties of the phenomenon is presented.  相似文献   

7.
Dayside low altitude satellite observations of the pitch angle and energy distribution of electrons and protons in the energy range 1 eV to 100 eV during quite geomagnetic conditions reveal that at times there is a clear latitudinal separation between the precipitating low energy (keV) electrons and protons, with the protons precipitating poleward of the electrons. The high energy (100 keV) proton precipitation overlaps both the low energy (keV) electron and proton precipitation. These observations are consistent with a model where magnetosheath particles stream in along the cusp field lines and are at the same time convected poleward by an electric field.The electrons with energies of a few keV move fast and give the “ionospheric footprint” of the distant cusp. The protons are partly convected poleward of the cusp and into the polar cap. Here the mirroring protons populate the plasma mantle. Equatorward of the cusp the pitch angle distribution of both electrons and protons with energies above a few keV is pancake shaped indicating closed geomagnetic field lines. The 1 keV electrons, penetrate, however, into this region of closed field line structure maintaining an isotropic pitch angle distribution. The intensity is, however, reduced with respect to what it was in the cusp region. It is suggested that these electrons, the lowest energies measured on the satellite, are associated with the entry layer.  相似文献   

8.
The plasma wave instrument (PWI) on board the Polar spacecraft made numerous passages of the dayside magnetopause and several probable encounters with the magnetosheath during the years 1996 and 1997. During periods of relatively high density, the PWI antenna-receiver system is coupled to the plasma and oscillates. The oscillations have been shown (cf. Radio Sci. 36 (2001) 203) to be indicative of periods of higher plasma density and plasma flows, possibly associated with magnetic reconnection. We have studied the plasma waves observed on three distinct magnetopause passes distinguished by the presence of these oscillations of the PWI receivers, and we report on the data obtained near, but not during, the times of the oscillations and the possible role of these waves in magnetic reconnection. Sweep-frequency receiver and high-resolution waveform data for some of these times are presented. The plasma wave measurements on each of the passes are characterized by turbulence. The most stable waves are whistler mode emissions typically of several hundred hertz that are seen intermittently in these regions. The data indicate the presence of impulsive solitary-like wave structures with strong electric fields both parallel and perpendicular to the magnetic field near, but not always within, suspected reconnection sites. The solitary waves show the highest occurrence when observed with electrostatic electron cyclotron waves. These latter waves have been observed in the past in the cusp, polar magnetosphere, and auroral regions and therefore may represent excursions into the cusp, but also indicate the presence of low-energy electron beams. Turbulence near the lower hybrid frequency, low-frequency EM waves, and impulsive monopolar electrostatic pulses are seen throughout the magnetopause and particularly near regions of large decrease in the local magnetic field and enhanced field-aligned flows, the suspected reconnection sites. The absence of significant solitary wave signatures within suspected reconnection sites may require modifications to some reconnection models.  相似文献   

9.
Observations made by HEOS-2 of low energy electrons and protons in the high latitude magnetosphere are presented. Plasma in the magnetosphere is observed in the cusp (which extend down to low altitudes) and over large areas adjacent to the high latitude magnetopause both on the dayside and on the nightside (the entry layer and the plasma mantle respectively).A comparative study of the plasma properties in the various parts of the magnetosphere is performed. An ion bulk motion directed tailward along the geomagnetic field lines is observed both in the entry layer and in the plasma mantle; in the cusp, on the contrary, the bulk motion is practically absent. Moreover the electron thermal anisotropy is parallel to the magnetic field in the magnetosheath, and perpendicular to it in the plasma mantle. One possible explanation (suggested by Rosenbauer et al., 1975) of the origin of these populations is that plasma, penetrated from the magnetosheath in the entry layer, flows tailward along the field lines, is then reflected in the cusp region and convected in the plasma mantle.  相似文献   

10.
The polar magnetic field on the Sun changes its sign during the maximum of solar cycles. It is known that the phenomenon of three-fold reversal of the polar magnetic field occurred in solar cycle 20. Using the magnetograph data of the Mount Wilson Observatory from 1967 to 1993, we confirm a previously suggested topological model of the three-fold magnetic-field reversal (Benevolenskaya, 1991). From the data set we have found that cycles with three-fold polar magnetic field reversals are characterized by a pronounced high-frequency component of the magnetic field compared with cycles with single polar magnetic-field reversals.  相似文献   

11.
We compare the shape and position of some plasma formations visible in the polar corona with the cyclic evolution of the global magnetic field. The first type of object is polar crown prominences. A two-fold decrease of the height of polar crown prominences was found during their poleward migration from the middle latitudes to the poles before a polar magnetic field reversal. The effect could be assigned to a decrease of the magnetic field scale. The second type of object is the polar plumes, ray like structures that follow magnetic field lines. Tangents to polar ray structures are usually crossed near some point, “a magnetic focus,” below the surface. The distance q between the focus and the center of the solar disk changes from the maximum value about 0.65 R at solar minimum activity to the minimum value about 0.45 R at solar maximum. At first glance this behaviour seems to be contrary to the dynamics of spherical harmonics of the global magnetic field throughout a cycle. We believe that the problem could be resolved if one takes into account not only scale changes in the global magnetic field but also the phase difference in the cyclic variations of large-scale and small-scale components of the global field.  相似文献   

12.
13.
Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, and in the magnetotail will be reviewed. Turbulence features like the fluctuation level, the spectral power law index, the turbulence anisotropy and intermittency, and the turbulence driver will be addressed.  相似文献   

14.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

15.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

16.
The paper considers wave transformation in the vicinity of the cusp resonance in an isothermic finite conductivity medium with a nearly horizontal magnetic field. It is shown that absorption of magnetogravity waves takes place when the inclination angle of the magnetic field is smaller than the critical angle. When the inclination angle is large then the critical magnetogravity waves are transformed into slow magnetoacoustic waves.  相似文献   

17.
H. Lin  J. Varsik  H. Zirin 《Solar physics》1994,155(2):243-256
High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor - the ratio of the area occupied by the magnetic elements to the total area - of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993.We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle.We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70°–80°) and low (60°–70°) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.  相似文献   

18.
MHD simulations are here applied to aid in the interpretation of three apparent cusp encounters by the Cluster 4 spacecraft in unusual places when the magnetosphere was under extreme solar wind and interplanetary magnetic field (IMF) conditions associated with the passage of magnetic clouds imbedded within fast ICMEs. At the time of each cusp encounter the IMF was very strong, generally northward in one case, generally equatorial in a second case, and generally southward in the third case. In the southward IMF case, the MHD models locate the origin of the cusp-like plasma by showing that the position of the spacecraft at the time of encounter was engulfed in a tongue of high-pressure plasma extending from the magnetopause into the magnetosphere. This tongue points to the northern-hemisphere cusp as the source of the feature. In the equatorial IMF case an elevated-pressure feature that apparently marked a cusp encounter in the computations coincided, however, with a passage in the solar wind of a dynamic pressure pulse, thus giving an alternative interpretation of the feature. However, Cluster data unambiguously identified the event as an encounter with magnetosheath-like plasma. Given that the Cluster observations classify the event as a true encounter with a cusp-like plasma feature (and not a compression event), the model simulations can be interpreted as identifying the origin of the feature to have been the northern-hemisphere cusp even though?—?and this is the interesting point?—?the observation point was in the southern hemisphere. In the northward IMF case, neither cusp (defined as a magnetic funnel linking the magnetopause to the Earth) was directly connected to the observation point. Instead, this encounter of magnetosheath-like plasma appears to be an instance of boundary-layer formation by means of the Song?–?Russell mechanism in which two-point magnetic reconnection entrains magnetosheath plasma on closed field lines when the IMF is northward.  相似文献   

19.
It is shown that the magnetic field of an enhanced dynamo current in the dayside boundary layer and of the connected circuit can quantitatively account for the equatorward shift of the cusp region which is observed during the expansive phase of magnetospheric substorms.  相似文献   

20.
We present a study of the magnetospheric cusp response to extreme external parameters during passage of the ICME over the Earth on 10 November 2004, based on Cluster observations of the plasma properties inside the low-latitude boundary layer (LLBL)/cusp regions. Two separate events are observed while Cluster is in the dawn sector, 07 – 08 h magnetic local time (MLT). First, a LLBL/cusp crossing occurs during a period of strong southward IMF. During this time, the LLBL/cusp is very small, ∼0.8 – 1° invariant latitude (ILAT) and moves equatorward, down to 67° ILAT. This can be explained by the occurrence of significant magnetopause erosion due to enhanced dayside sub-solar reconnection. The energy of the plasma inside this region is higher than normal, and the low-energy cut-off often observed in the ion data is also unusually high. This might be explained by the suggestion that the local magnetosheath Alfvén velocity and deHoffmann – Teller velocity are also both extremely high. However, the plasma convection and parallel velocity inside this region are not very high. The second event discussed in this paper is a LLBL/cusp crossing during strong equatorial IMF (mostly due to the dominant dawn – dusk component). Under these conditions, occurring at the same time as pulses of solar wind dynamic pressure, the observations are very complicated. However, we suggest that in the polar region of the southern hemisphere, Cluster cross two LLBLs/cusps, spatially separated by polar cap plasma. The first LLBL/cusp is formed by anti-parallel reconnection in the dusk sector of the southern hemisphere and the second is formed by anti-parallel reconnection in the dawn sector of the northern hemisphere. The second LLBL/cusp is located at extremely low latitude, less than ∼66.3° ILAT. During all LLBL/cusp crossings, strong ionospheric O+ ion outflow is detected in the form of a narrow beam with limited pitch-angle range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号