首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Geology》2005,214(4):309-322
Gravity cores from the continental slope in the northwestern Black Sea were studied using high-resolution stable isotope, grain size and XRF-scanning data. The measurements provide a 30 000 years AMS 14C-dated record of variations in the hydrological regime of the Black Sea and give insight into changing paleoenvironments in the surrounding areas. Stable climatic conditions during the Last Glacial Maximum were followed by a series of meltwater pulses most likely originating from the Scandinavian ice sheet between 18 000 and 15 500 yr BP.1 This meltwater input rose the level of the Caspian Sea to a point that Caspian water could spill into the Black Sea via the Manych-depression north of the Caucasian mountains. High-frequency oscillations in the XRF-data during this period suggest a probable link to the arctic climate regime. Later, during the Bølling/Allerød and the early Holocene, prevailing high temperatures led to authigenic calcite precipitation through increased phytoplankton activity, interrupted by the Younger Dryas and the “8200 yr BP cold event” with dominant clastic sedimentation.  相似文献   

2.
The northern continental slope off the Ebro Delta has a badland topography indicating major slope erosion and mass movement of material that deposits sediment into a ponded lobe. The southern slope has a low degree of mass movement activity and slope valleys feed channel levee-complexes on a steep continental rise. The last active fan valley is V-shaped with little meandering and its thalweg merges downstream with the Valencia Valley. The older and larger inactive channel-levee complex is smoother, U-shaped, and meanders more than the active fan valley.  相似文献   

3.
Lithostratigraphic and biostratigraphic evidence is presented which suggests that shoreward movement of sediment, resulting in the formation of a barrier beach, has been the dominant method of accretion in the Eastbourne area, with longshore drift probably being of only secondary importance. A model of coastal evolution for this area has been constructed. It appears that distinct phases of accretion have occurred during the Holocene as well as a change in the type of sediment transported into this area. Originally of silty clay then sand and finally of gravel, a distinct coarsening-upwards in the sedimentary sequence is apparent. A loss of sediment since the 18th century has resulted in the erosion of Eastbourne's beaches. This current episode of erosion may have important implications for land use. The study of Iron Age forest clearance in the Combe Haven valley of East Sussex exemplifies the inter-relationship of sedimentation between river and coastal systems. At the heart of this relationship is the hypothesis that forest clearance resulted in a substantial release of colluvial material, and a concurrent increase in river discharge. Biostratigraphic evidence, supported by radiocarbon dating, suggests that the development of the floodplain in the Combe Haven valley may be directly linked to forest clearance, and that the estuary of this river was modified by the increase in discharge due to reduced evapotranspiration and increased run off, causing a marine incursion into the lower course of the Combe Haven valley. The results from the two areas discussed suggest cyclic erosion phases associated with a change from one sediment type to another.  相似文献   

4.
Much of the modern upper (proximal) Monterey fan is a channel–levee complex, the Upper Turbidite Sequence (UTS), that was deeply eroded after the channel breached a volcanic ridge to reach a deeper base level. Ages of sediment samples collected with the ALVIN submersible from the deepest outcrop within the channel–levee system, 390?m below the adjacent western levee crest, indicate that the UTS deposits accumulated at ≥1?m?ka?1 during the last 500?ka. Neogene and Early Pleistocene sediment accumulation on the fan prior to the UTS was much slower (<0.03?m?ka?1), and underlying turbidite systems(?) had substantially different morphologic expression(s).  相似文献   

5.
The Quaternary sections of the Nile Cone in the eastern Mediterranean are formed by regionally extensive repetitions of sediment sequences (cyclothems s.l.) showing a successive, orderly arrangement of sediment types. Detailed lithofacies analysis reveals the recurrence of three basic terms in many cores: a basal olive-gray hemipelagic mud and turbidite sequence; a middle sapropel sequence; and an upper yellowish-orange hemipelagic sequence, including calcareous ooze, and a turbiditic sequence. This cyclic sedimentation closely reflects the Quaternary dynamics. The development of the Nile submarine fan in an enclosed, silled basin has resulted in a particularly close relation between biogenic-terrigenous depositional patterns and climatic and oceanographic factors affecting the Mediterranean.  相似文献   

6.
This study addresses reservoir development and hydrocarbon occurrence of the late Pliocene basin-floor fan deposits in the northeastern Bay of Bengal. The G-series turbiditic sandstones host dry gases, biogenic in origin, of three gas fields that are juxtaposed on the western flank of the NW–SE anticline. The gas reservoirs are stacked in back-stepping fashion being sourced from northwest as part of the Bengal fan. The Shwe field (Shwe fan) has an elongate fan-shaped morphology (12 km long and 4 km wide) and occurs about 30 km off the base of slope.The Shwe field reservoirs consist of two contrasting types of turbidite deposits, lower G5.2 and upper G3.2 reservoirs. The G5.2 is characterized by stacked lobe elements in which amalgamated and layered sheet sandstones provide an excellent vertical connectivity and high net-to-gross ratio (avg. 86%). On the contrary, the G3.2 represents overbank deposits, which is characterized by thin-bedded sandstones with low net-to-gross ratio (avg. 33%) as well as low-resistivity pays.Aside from the primary depositional framework, post-depositional modifications appear to have greatly affected Shwe fan, adding complexity in establishing a geological model. A line of evidence suggests that G5.2 lobe sands were injected into overlying G3.2, mostly in the form of sills. The injected sand beds measured from G3.2 cores account for 10 m, more than half of the total net sand. The sand injection is thought to be triggered by slumping that overpressured G5.2 lobes. Post-G3.2 erosional channel complexes incised into G5.2 and G3.2, ultimately diminishing gas pool extent as well as dividing Shwe fan into multiple compartments.  相似文献   

7.
Barrier island stratigraphy and Holocene history of west-central Florida   总被引:4,自引:0,他引:4  
Although the morphology of the barrier-inlet system along the west-central Florida coast is quite complicated, the stratigraphy of these barriers is rather simple. The basal Holocene unit in most cores is an organic-rich, muddy sand that represents a vegetated, paralic marine, coastal environment similar to that which is north and south of the present barrier system. Above that unit is a muddy, bioturbated sand that displays a marine fauna at most locations but also contains Crassostrea virginica in a few places. These sediments accumulated in a low-energy marine setting that may or may not have been protected by a barrier island. Much of this facies also represents sediment that was delivered as washover deposits in an intertidal or subtidal setting and was subsequently bioturbated. The facies that can be attributed to a barrier island with some certainty are no more than 3000 years old, and on most islands, are much younger. These are the shelly sand and sorted sand facies. The shelly strata represent deposition in nearshore, beach, supratidal washover or intertidal spillover environments, and tidal inlet and tidal delta channels, whereas the sorted sand is typical of eolian deposition in dunes or the backbeach and some tidal delta elements. The presence of Holocene oyster beds offshore of a present barrier suggests that some of these islands formed significantly offshore and moved to their present position through washover. It is likely that most of these barriers initially formed through upward shoaling by waves. Although there is significant morphologic difference between the wave-dominated and mixed-energy, drumstick barrier islands, their stratigraphy is quite similar. The only significant difference is the presence of extensive progradation on at least part of the drumstick islands and a relatively high amount of former washover deposits on the wave-dominated type.  相似文献   

8.
An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features.  相似文献   

9.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   


10.
刘阿成  张杰  唐建忠 《海洋学报》2020,42(11):49-61
本文采用高分辨率单道浅地震剖面资料研究闽江口外海域的全新统沉积作用。研究区的全新统底面为MIS 2期侵蚀面,局部为古河道,深度一般在现海面下约30~60 m,最深约65 m;近岸浅,外海深,局部受古河道的下切影响呈条带状负地形。全新统由早全新世晚期以来的海相沉积层(U1)和早全新世河流湖沼相沉积层(U2)组成,前者包括滨浅海平行地震相和河口滨岸前积地震相,根据其反射波向陆上超和向海下超底界面,结合沉积物厚度分布特征,可以判断主要的沉积物来源和运移趋势。全新统沉积层厚度一般为10~20 m,最厚约38 m,位于古河道区,但是在马祖列岛和白犬列岛之间海区缺失。海相全新统沉积层的厚度为数米至20 m,最厚约25 m,位于研究区东南部(海坛岛东侧)。自全新世海侵以来,沉积物主要来源于3部分:台湾海峡来沙为研究区南部海区提供了沉积物;闽江悬沙扩散沉积物覆盖研究区北部海区,主要沿NE方向至外海,在河口向南呈舌状,现代沉积中心位于河口北部,厚度大于15 m;浙闽沿岸流来沙对研究区东北部海区的沉积物有影响。沉积环境划分为台湾海峡源沉积区、闽江源沉积区、东北部混合沉积区和马祖−白犬沉积缺失区,平均沉积速率分别约为0.8 mm/a、1.0 mm/a、1.1 mm/a和0 mm/a。马祖−白犬沉积缺失区主要因为沉积物受沿岛环流的控制。  相似文献   

11.
《Marine Geology》2005,214(4):389-409
The innermost shelf of the eastern Korea Strait is a ria-type coastal sea comprising islands, intervening passageways and embayments. A detailed analysis of high-resolution (1−10 kHz) subbottom profiles and core sediments from this area reveals complicated depositional and distributional patterns of the Holocene mud deposits related to complex topography with varying supply of the adjacent Nakdong riverine sediments. Sediments from the Nakdong River were bifurcated around Gadeok Island, forming two proximal systems: Nakdong and western Gadeok systems. These proximal systems prograded offshore (southward) by active sediment supply from the Nakdong River in the early stage. Suspended sediments passing through the Nakdong system formed the distal (Gadeok Waterway and eastern Geoje) systems in the area between the northern Geoje and Gadeok islands. These distal systems show a northwestward (onshore) prograding tendency to Jinhae Bay, the biggest bay in the vicinity of the Nakdong estuary in which the Jinhae Bay system developed. In the late stage, a remarkable decrease of sediment supply from the Nakdong River has caused retrograding geometry of the two proximal systems. However, the most distal (Jinhae Bay) system has continuously prograded bayward due to the persistent supply of sediments resuspended by strong tidal currents from nearby distal (Gadeok Waterway and eastern Geoje) systems. These complex depositional features indicate that topography has an important influence on depositional developments of the Holocene mud deposits by controlling path and intensity of sediment dispersal and resuspension processes.  相似文献   

12.
南海深水区末次冰期和冰后期沉积物堆积速率的特征   总被引:3,自引:0,他引:3  
黄维  汪品先 《海洋学报》2007,29(5):69-73
通过统计南海100 m以下深水区的136个沉积柱状样的分析数据,对南海末次冰期以来的堆积速率进行了统计.计算出MIS(marine isotope stage)1期的年均沉积量为152.3 Mt/a,2期的为215.2 Mt/a,主要为陆源物质的贡献.无论在末次冰期还是在冰后期,堆积速率均在南海西南部最高,其次是在东北部,在其他地区较低.由于侧向搬运和顺坡搬运频繁,虽然整体上末次冰期的堆积速率高于冰后期的,但在沉积物高速堆积地区附近有相反的变化趋势.  相似文献   

13.
The Indus Fan records the erosion of the western Himalayas and Karakoram since India began to collide with Asia during the Eocene, 50 Ma. Multi-channel seismic reflection data from the northern Arabian Sea correlated to industrial well Indus Marine A-1 on the Pakistan Shelf show that sedimentation patterns are variable through time, reflecting preferential sedimentation in deep water during periods of lower sea-level (e.g., middle Miocene, Pleistocene), the diversion of sediment toward the east following uplift of the Murray Ridge, and the autocyclic switching of fan lobes. Individual channel-levee systems are estimated to have been constructed over periods of 105–106 yr during the Late Miocene. Sediment velocities derived from sonobuoys and multi-channel stacking velocities allow sections to be time-depth converted and then backstripped to calculate sediment budgets through time. The middle Miocene is the period of most rapid accumulation, probably reflecting surface uplift in the source regions and strengthening of the monsoon at that time. Increasing sedimentation during the Pleistocene, after a late Miocene-Pliocene minimum, is apparently caused by faster erosion during intense glaciation. The sediment-unloaded geometry of the basement under the Pakistan Shelf shows a steep gradient, similar to the continent-ocean transition seen at other rifted volcanic margins, with basement depths on the oceanward side indistinguishable from oceanic crust. Consequently we suggest that the continent-ocean transition is located close to the present shelf break, rather than >350 km to the south, as previously proposed.  相似文献   

14.
The Earth's climate is controlled by various factors, with large scale ocean currents playing a significant role. In particular, the global thermohaline circulation of water masses like the Antarctic Bottom Water (AABW), or the North Atlantic Deep Water (NADW), is a global motor for maintaining the exchange of water masses. The AABW and NADW have met and interacted off South Africa since Oligocene times. Here, the narrow deep Agulhas Passage gateway, located between South Africa and the submarine Agulhas Plateau, constrains bottom water exchange between the southeast Atlantic and the southwest Indian Ocean. A seismostratigraphic analysis of sedimentary structures in the Transkei Basin, which opens up at the eastern end of the Agulhas Passage, was carried out, to reconstruct the palaeocurrents off South Africa. The analysis of newly collected high resolution seismic reflection data showed the effect of large scale current deposition. There are at least 5 major sedimentary phases to observe, some of which seem to be influenced by NADW and AABW. The first stage represents ongoing deep sea sedimentation from middle Cretaceous to middle Tertiary times. Later stages are separated by discordances, which represent the onset of AABW and NADW, among others, triggered by the opening of the Drake Passage gateway ( 35 Ma) and the closure of the Isthmus of Panama ( 3 Ma). We found two large drift bodies located one above the other. Corresponding to their shape and position, the older drift is inferred to have been deposited by currents flowing in a north–southerly direction, whereas the younger drift lies perpendicular to it and seems to be built up by west–east flowing currents.  相似文献   

15.
The major fisheries on the Pacific coast of Canada can be grouped into 12 species that have consistently represented about 80–90% of the total catch from the past to the present. A review of population dynamics of these species indicates that climate and the ocean environment have a major impact on their productivity. We review the history of Canada's Pacific coast fishery to show that trends in catch were similar to trends in the climate and ocean environment. Decadal scale patterns in climate and the ocean are termed regimes and we show that it is the regime scale of climate variability that most influences the long-term trends in the catches in these major fisheries. Ignoring the impacts of regime shifts on the abundance trends in the future could result in collapses of major fisheries. The difficulty of knowing when a regime shift will occur may be overcome as we discover more about the mechanisms that affect the decadal-scale trends in the rotational velocity of the solid earth which is measured as the length of day (LOD).  相似文献   

16.
We used a quiet, deep-diving remotely operated vehicle (ROV) to conduct oblique, quantitative video transects of the bathypelagic fauna at depths between 1000 and 3500 m at a site over the Monterey Submarine Canyon, in the eastern North Pacific off central California. Fifteen such dives were made over a two-year period. Analyses of the video data revealed a rich and diverse fauna dominated by gelatinous animals. In particular, the holopelagic polychaete Poeobius meseres was an important detritivore in the upper half of this depth range. As Poeobius abundance eventually declined with increasing depth, larvacean abundance increased. In contrast, the relative numbers of crustacean grazers, principally copepods and mysids, remained relatively constant with depth. Medusae were most abundant and most diverse among the gelatinous predators, which also included ctenophores, and siphonophores. Chaetognaths occurred chiefly in the upper half of the depth range. While there is considerable overlap, the bathypelagic fauna can be separated into upper (1000 to 2300 m) and lower (2400 to 3300 m) zones, as well as a distinct and populous benthic boundary layer. Within the overall bathypelagic community is a complex web of trophic links involving gelatinous predators that feed on both gelatinous and hard-bodied particle feeders, as well as on each other. The amount of organic carbon contained in this jelly web is substantial but its ecological fate is uncertain. The assessment of bathypelagic communities will be important for establishing baselines to conserve deep pelagic biodiversity within high-seas protected areas.  相似文献   

17.
Elkhorn Slough is California's second largest estuary and the United States' first estuarine sanctuary. It occupies the western reaches of Elkhorn Valley, a relic river valley eroded by drainage pouring out of the Santa Clara and/or Great Valley of California into Monterey Bay during the early Pleistocene. During the mid-late Pleistocene Elkhorn Valley was tectonically truncated from its headwaters by right-lateral movement along the San Andreas Fault.During the last glacial maximum, 16–18 × 103 years before present (b.p), local drainage in Elkhorn Valley incised a stream channel at least 29 m below present day sea-level, as its base level was progressively lowered. With the ensuing Holocene sea-level rise, marine waters invaded this incised channel, floored with non-marine sandy gravels, creating a high-energy tidal inlet at the mouth of Elkhorn Slough approximately 8000 years b.p. As sea-level continued to rise, the main channel of Elkhorn Slough became filled by an estuarine, fining-upward sequence characterized by progressively shallower, lower-energy deposits. A quiet water estuary, considerably larger than the present-day Elkhorn Slough, existed approximately 3000 years b.p. As the Slough was slowly filling, salt marshes developed along its landward margins and have progressively advanced toward the center of the Slough during the past 5000 years.Historical records indicate numerous natural changes in the Elkhorn Slough vicinity. In the mid-1850s a.d. Elkhorn Slough was a minor tributary to the much larger Pajaro-Salinas River system which shared a common entrance to the Pacific Ocean north of Moss Landing. In 1909 winter storms modified the course of the Salinas River to its present location south of Moss Landing, while Elkhorn Slough persisted as a tributary to the Old Salinas River channel. Construction of jetties at the Moss Landing Harbor in 1946 provided a direct link between the Pacific Ocean and Elkhorn Slough. At this time, salt marshes began to retreat from the axis of Elkhorn Slough as it evolved into its present form as a relatively stable estuarine embayment. Had the jetties not been installed, Elkhorn Slough would have likely evolved into a freshwater wetland and eventually into a dry alluvial valley within 2000 years. The future fate of Elkhorn Slough will undoubtedly be controlled by relative sea-level changes, sediment supply, and human activities.  相似文献   

18.
为了探讨西北地区古火演化及其驱动机制,基于28个样点的炭屑和黑碳记录,集成重建该区8 kaBP的古火变化序列;同时结合古植被、古气候、历史文献等记录,分析了古火活动与气候变化和人类活动之间的关系。结果表明:西北地区中晚全新世火历史可以划分为4个阶段;① 火活动波动阶段(8~6 kaBP),古火事件发生频繁,主要受气候变化的影响;② 火活动平稳阶段(6~4 kaBP),气候趋于暖湿化,植被有所发展,贮藏了一定的燃烧质;③ 火活动快速上升阶段(4~2 kaBP),人类活动成为火事件的主要影响因素,古火活动频率呈现不断上升的趋势;④ 火活动大范围发生阶段(2~0 kaBP),气候由湿冷向干冷转化,生物质干燥易燃,农业快速发展,朝代更替和战争频繁,火活动异常剧烈。  相似文献   

19.
Based on preliminary results of sedimentological and organic geochemical investigations, distinct changes in the composition of siliciclastic and biogenic components occured in sediments from the East Greenland Continental Slope and Shelf and Scoresby Sund during the latest Pleistocene to Holocene times. These changes probably reflect the (? early/) late Weichselian glacial to Holocene interglacial transition, i.e., the decay of continental ice masses and sea-ice cover, causing major changes in supply of terrigenous matter and surface-water productivity. Flux rates of coarse-grained ice-rafted debris (IRD) distinctly decreased on the continental slope/shelf during the deglaciation interval. During the last 10,000 years, major amounts of IRD were trapped in the Scoresby Sund system. In comparison to modern interglacial conditions, surface-water productivity was significantly lower during the last glacial.  相似文献   

20.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号