首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transient response of the topside ionosphere to precipitation   总被引:1,自引:0,他引:1  
A numerical time-dependent model of the topside and F-layer ionosphere is used to describe how the density of O+ ions and the plasma temperatures change as a result of transient electron precipitation with a soft energy spectrum (ca. 100 eV per electron). The response time for electron gas heating is about 2 min; for changes in topside scale height it is from 5 to 15 min, depending on altitude; and for changes in F-layer peak density, it is more than an hour. The low-density topside ion gas is thermally isolated on a short time scale; consequently the ion temperature responds almost adiabatically to volume changes. A transient precipitation event (of, say, 10 min duration) initiates a disturbance that propagates upward at approximately the sonic upeed in the plasma (ca. 2km/s), growing in amplitude with height. Such an event has little effect on the density at the peak of the F layer. An element of ionosphere that drifts horizontally in an antisunward direction through the magnetospheric cleft and into the polar cap recieves some ionization from the cleft, but not enough to be decisive in its survival. The collapse of the topside when heating is removed increases temporarily the density of the F layer.  相似文献   

2.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

3.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

4.
Satellite and other observations have shown that H+ densities in the mid-latitude topside ionosphere are greatly reduced during magnetic storms when the plasmapause and magnetic field convection move to relatively low L-values. In the recovery phase of the magnetic storm the convection region moves to higher L-values and replenishment of H+ in the empty magnetospheric field tubes begins. The upwards flow of H+, which arises from O+—H charge exchange, is initially supersonic. However, as the field tubes fill with plasma, a shock front moves downwards towards the ionosphere, eventually converting the upwards flow to subsonic speeds. The duration of this supersonic recovery depends strongly on the volume of the field tube; for example calculations indicate that for L = 5 the time is approximately 22 hours. The subsonic flow continues until diffusive equilibrium is reached or a new magnetic storm begins. Calculations of the density and flux profiles expected during the subsonic phase of the recovery show that diffusive equilibrium is still not reached after an elapsed time of 10 days and correspondingly there is still a net loss of plasma from the ionosphere to the magnetosphere at that time. This slow recovery of the H+ density and flux patterns, following magnetic storms, indicates that the mid-latitude topside ionosphere may be in a continual dynamic state if the storms occur sufficiently often.  相似文献   

5.
It is suggested that the quiet day daily magnetic variation in the polar cap region, Sqp, results partly from the short-circuit effect of the magnetotail current by the polar ionosphere. This implies that there is an inward field-aligned current from the dawnside magnetopause to the forenoon sector of the auroral oval (positively charged) and an outward field-aligned current to the duskside magnetopause from the afternoon sector of the oval (negatively charged), together with the ionospheric (Pedersen and Hall) currents. The distribution of the magnetic field vectors of both combined current systems agrees with the observed Sqpvector distribution. The space charges provide an electric field distribution which is similar to that which has been observed by polar orbiting satellites.  相似文献   

6.
A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid latitude concentrations of H+ and He+ decrease sharply with latitude, dropping to levels of 103 ions/cm3 or less near 60° dipole latitude (L=4). In contrast to the ‘main trough’ in electron density, Ne, observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection. The fact that a pronounced light ion trough is observed under conditions for which the dominant ion O+ may exhibit little or no simultaneous decrease appears to explain why earlier studies of the ‘main trough’ in topside distributions of Ne and Ni may, at times, have been inconclusive in relating the total ionization minimum with the mechanism of the plasmapause. In particular, the topside distribution of Ni appears to be the complex resultant of several variables within the ion composition, being governed by the competing processes of chemical production and loss, loss through magnetospheric convection, and large-scale dynamic transport resulting from neutral winds and electric fields. The net result is that in general, the light ion trough, rather than Ni, provides a more fundamental parameter for examining the structure and behavior of the plasmapause.  相似文献   

7.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

8.
In this paper we present results for a general system of transport equations appropriate to a multi-constituent gas mixture. This system includes a continuity, momentum, internal energy, pressure tensor and heat flow equation for each species. The results can be applied to both collision dominated and collisionless plasmas with there being explicit limits derived for the validity of the various expressions. In the limit of very frequent collisions the pressure tensor and heat flow equations give the usual Navier-Stokes results for the viscous stress tensor and heat flow vector. Furthermore, the momentum equation includes thermal diffusion and thermoelectric transport coefficients equivalent to the second approximation of Chapman and Cowling. The basic system of equations has been applied to different regions of the ionosphere and neutral atmosphere. It is found that: (1) The viscous stress tensor and heat flow expressions used in previous studies of the neutral thermosphere may not be appropriate; (2) The transport coefficients normally used for mid-latitude F2-region and topside studies seem to be adequate; (3) The high speed flow of plasma in the polar topside ionosphere is likely to be strongly affected by stresses and heat flow; and (4) E- and F-region ionization at high latitudes is substantially affected by stresses and heat flow.  相似文献   

9.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

10.
This paper derives the basic propagation characteristics of hydromagnetic waves in various layers of the ionosphere. It is shown that propagation in the upper ionosphere and the F2 layer is largely isotropic. In the lower region of the ionosphere there are two possible modes of propagation, both being anisotropic. Propagation characteristics of waves in this lower region, however, are relatively independent of the direction of horizontal propagation. Calculations of intrinsic wave attenuation show that ducted propagation of Pc 1 signals over appreciable horizontal distances may only take place in the upper layers of the ionosphere.  相似文献   

11.
Empirical models of molecular ion densities (N2 +, NO+, O2 +) and the electron density (N e ) are presented in the altitude interval 50–4000 km as functions of time (diurnal, annual), space (position, altitude) and solar flux (F 10.7). Using observations of 6 satellites (AE-C, AE-D, AE-E, ALOUETTE-2, ISIS-1, ISIS-2), 4 incoherent scatter stations (Arecibo, Jicamarca, Millstone Hill, St Santin) and more than 700 D-region profiles, this model describes the global gross features of the ionosphere for quiet geophysical conditions (K p 3).The molecular ion densities and the electron density increase with increasing altitude up to a maximum (or several maxima) - and decrease from thereon with increasing height. Between ~80 and 200 km, the main ionic constituents are NO+ and O2 +; below ~80 km cluster ions are predominating. During local summer conditions the molecular ions and N e increase around polar latitudes and decrease correspondingly during local winter. The diurnal variations are intrinsically coupled to the individual plasma layers; in general, the molecular ion and electron densities are enhanced during daytime and depleted during nighttime (for details and exceptions, see text).  相似文献   

12.
Global auroral imagery obtained by DMSP satellites during the years 1972–1979 over both the northern and southern high latitude polar regions were examined to study the morphology of the discrete arcs known as polar cap arcs. Based upon their morphology, the polar cap arcs can be generally classified into three types viz. (1) the distinctly sun-aligned polar cap arcs—Type 1 arcs, (2) the morning/evening polar cap arcs expanded from the auroral oval—Type 2 arcs and (3) the hook shaped arcs connecting the polar cap arc with the oval arc (including the hitherto unreported oppositely oriented hook shaped arcs)—Type 3 arcs. Concurrent auroral electrojet indices (AE) and interplanetary magnetic field (IMF) data were used to study the occurrence of the polar cap arcs. It was found that Type 1 arcs were observed mostly during low geomagnetic activity conditions, bright Type 2 arcs during the recovery phase of the substorms and Type 3 arcs do not occur during the recovery phase of the substorm. Over both hemispheres, the polar cap arcs were observed mostly during northward IMF. Furthermore, Type 1 arcs were obeserved over the northern polar cap during mostly negative Bx periods and over the southern polar cap during mostly positive Bx periods. The latter observation suggests that these types of arcs may be non-conjugate.  相似文献   

13.
Images of the instantaneous nightside auroral distribution reveal that at times the orientation of auroral oval arcs changes to become characteristic of polar cap arcs. These connecting arcs all terminate in the diffuse aurora in the midnight sector, and their separation from the equatorward boundary of the diffuse aurora generally increases away from the midnight termination. The occurrence of these features requires a northward interplanetary magnetic field (positive Bz) as well as low magnetic activity. The existence of connecting arcs and the observation that they are at times the poleward boundary of weak diffuse emission indicate that the poleward boundary of auroral emissions can be significantly modified during non-substorm periods. Such a distortion implies that there can be a modification of the standard convection pattern in the magnetosphere during periods of positive Bz to produce expanded regions of sunward convection in the high latitude ionosphere.  相似文献   

14.
A detailed study of the mechanism of electromagnetic stratification of the large-scale stationary magnetospheric convection due to a friction of the convective flow in the ionosphere layer was performed. Magnetosphere-ionosphere interaction was taken into account by means of the effective boundary conditions on the ionosphere top and bottom boundaries including the actual height profile of charge particles velocity in the ionosphere. It has been shown that the magnetospheric convection is stratified into small-scale current sheets which are respective in the linear approximation to an oblique Alfvén wave. The dispersion equation was deduced for the Alfvén mode and its solution obtained determining the space-time scales and the increment of instability. The maximum increment is realized for the disturbances stretched along the convection velocity that is correspondent to the actual orientation of the auroral arcs. In the conditions of rapid growth of Alfvén velocity above the maximum of the ionosphere F layer, it was shown that small-scale disturbances with the transverse scales l ? 1 km are localized at the altitudes up to several thousand kilometers whereas the large-scale stratification penetrate into the equatorial plane of the magnetosphere. A mechanism is proposed to intensify the parallel electric field acting at that stratification stage when the field-aligned currents in the Alfvén wave are sufficient to form abnormal resistance along geomagnetic lines of force.  相似文献   

15.
After reviewing the basic characteristics of the polar cap arcs, it is suggested that their appearance can be explained if the open region splits into two, one located in the dawn sector and the other in the dusk sector. It is suggested that a distinct splitting occurs temporarily when an IMF tangential discontinuity passes by the magnetosphere and the sign of the IMF By component changes at the discontinuity, provided that the IMF Bz component is positive on both sides. As a result, the dawn or the dusk side of the polar region will be connected to either the front side or the hind side of the discontinuity, depending on the sign of the By component across the discontinuity. As the dynamo process is expected to operate in each of the two open regions (as is the case in the single open region), it is reasonable to infer that a sheet of plasma and of field-aligned currents forms in the region between the two open regions, resulting in the polar cap arcs across the polar region. The four-cell convection pattern may also appear. A model of the magnetosphere is constructed to demonstrate such a possibility.  相似文献   

16.
One prominent feature of the high latitude topside ionosphere is the existence of sharp latitudinal depletions in the total ion (electron) concentrations within the auroral/cusp regions. These high latitude troughs, as seen by the Bennett ion mass spectrometer observations on the satellite OGO 6 at altitudes between 400 and 1100km correspond to depletions in the atomic ions which are accompanied by localized enhancements of the minor molecular ion densities. All of the high latitude troughs traversed by OGO 6 (1969–1970) were recorded and the average invariant latitude-magnetic local time (M.L.T.) distribution was determined. The troughs on the average were found at all local times to be in the vicinity of the auroral oval and to move equatorward in response to increasing magnetic activity. The average trough location was compared to the average polar cap boundary as defined by the convection electric field reversal and the electron trapping boundary as well as to the maximum horizontal magnetic disturbance associated with the large scale field aligned currents. The high latitude troughs on the average best followed the maximum magnetic disturbance distribution. It is concluded that the troughs are the result predominantly of enhanced chemical 0+ losses in regions with high convection velocities.  相似文献   

17.
Measurements of electron content (NT) near the crest of the equatorial ionosphere anomaly in South America have been made and analysed to investigate NT variations with solar hour, solar rotation and geomagnetic storms. The annual mean of diurnal ratio, defined as the ratio of the maximum to the minimum electron content of the day is found to be 5.0. Anomalous increases in night time electron content are observed with maxima around 2100 LMT and 2300 LMT during summer and equinoctial months. These increases are found to be linked with vertical motion of the F-layer. Spatial resonance in equatorial F-layer plasma appears to be the possible cause of these increases.  相似文献   

18.
Using the data obtained by means of the Alouette-1 satellite, the distribution of electron density in the region of the F2-layer maximum and topside ionosphere during different phases of two successive magnetic storms on September 13 and 16,1963 have been studied. The middle latitudes at local near noon and midnight hours have been considered mainly. It is shown that the daytime topside electron density at some altitudes did not change during the main phases of the two magnetic storms. The electron density decreases below these levels and increases above. During the recovery phases of both magnetic storms the increase in electron density remains at all altitudes from hmF2 to 1000 km.  相似文献   

19.
The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects associated with polar cap perturbations discussed by Svalgaard (1973). As well a region of equatorward flow appears at high latitudes near the dawn meridian, which appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.  相似文献   

20.
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of ~5.2 Re traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2.0–5.4. The locations of the Explorer 45 plasmapause crossings (determined by the saturation of the d.c. electric field double probe) during this month were compared to the latitudinal decreases of the H+ density observed on ISIS 2 (by the magnetic ion mass spectrometer) near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Hence, the abruptly decreasing H+ density on the low latitude side of the ionospheric trough is not a near earth signature of the equatorial plasmapause. Vertical flows of the H+ ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 km s?1 near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H+ trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause. The existence of upward accelerated H+ flows to possibly supersonic speeds during the refilling of magnetic flux tubes in the outer plasmasphere could produce an equatorial plasmapause whose field lines map into the ionosphere at latitudes which are poleward of the H+ density decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号