首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total suspended matter in the water column of the Caribbean was determined quantitatively by means of filtration through 0.45 μ membrane filters. Results show that prior values obtained by centrifuging methods are too low, and that the existence of a nepheloid layer cannot be gravimetrically demonstrated in the Caribbean.  相似文献   

2.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

3.
Deep sea drilling in the Central Gulf of California, a young and active spreading centre, shows that the high heat flow typical of these regions causes extensive alteration of sediment organic matter, especially near sills and above magma chambers where hydrothermal activity is concentrated. Even on the nearby passive margin, where there are no sills, heat flow is moderately high and hydrocarbon generation has begun in immature sequences. Migrating light hydrocarbons are detected especially where hydrothermal activity is concentrated. Thermogenic methane is more widespread, though not in the passive margin bordering the spreading centre. Despite the incidence of hydrocarbon generation and migration, the amounts of hydrocarbons involved are relatively small and apparently do not lead to commercially significant accumulations of petroleum.The organic matter in these sediments is mostly marine because the Gulf of California generally has low runoff from land and highly productive surface waters. Turbidites rich in terrigenous organic material are locally abundant in the mainly pelagic section in the Guaymas Basin. The highest concentrations of organic matter are found in laminated diatomites deposited on the Guaymas passive margin within the oxygen minimum zone.  相似文献   

4.
The variability of the Caribbean Current is studied in terms of the influence on its dynamics of the freshwater inflow from the Orinoco and Amazon rivers. Sea-surface salinity maps of the eastern Caribbean and SeaWiFS color images show that a freshwater plume from the Orinoco and Amazon Rivers extends seasonally northwestward across the Caribbean basin, from August to November, 3–4 months after the peak of the seasonal rains in northeastern South America. The plume is sustained by two main inflows from the North Brazil Current and its current rings. The southern inflow enters the Caribbean Sea south of Grenada Island and becomes the main branch of the Caribbean Current in the southern Caribbean. The northern inflow (14°N) passes northward around the Grenadine Islands and St. Vincent. As North Brazil Current rings stall and decay east of the Lesser Antilles, between 14°N and 18°N, they release freshwater into the northern part of the eastern Caribbean Sea merging with inflow from the North Equatorial Current. Velocity vectors derived from surface drifters in the eastern Caribbean indicate three westward flowing jets: (1) the southern and fastest at 11°N; (2) the center and second fastest at 14°N; (3) the northern and slowest at 17°N. The center jet (14°N) flows faster between the months of August and December and is located near the southern part of the freshwater plume. Using the MICOM North Atlantic simulation, it is shown that the Caribbean Current is seasonally intensified near 14°N, partly by the inflow of river plumes. Three to four times more anticyclonic eddies are formed during August–December, which agrees with a pronounced rise in the number of anticyclonic looper days in the drifter data then. A climatology-forced regional simulation embedding only the northern (14°N) Caribbean Current (without the influence of the vorticity of the NBC rings), using the ROMS model, shows that the low salinity plume coincides with a negative potential vorticity anomaly that intensifies the center jet located at the salinity front. The jet forms cyclones south of the plume, which are moved northwestward as the anticyclonic circulation intensifies in the eastern Caribbean Sea, north of 14°N. Friction on the shelves of the Greater Antilles also generates cyclones, which propagate westward and eastward from 67°W.  相似文献   

5.
The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate’s interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N–S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8° to 30° reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin.  相似文献   

6.
The mesoscale variability in the Caribbean Sea. Part II: Energy sources   总被引:1,自引:0,他引:1  
The processes which drive the production and the growth of the strong mesoscale eddy field in the Caribbean Sea are examined using a general circulation model. Diagnostics of the simulations suggest that:(1) The mean currents in the Caribbean Sea are intrinsically unstable. The nature of the instability and its strength vary spatially due to strong differences of current structure among basins.(2) The greatest and most energetic eddies of the Caribbean Sea originate in the Venezuela Basin by mixed barotropic-baroclinic instability of an intense jet, formed with waters mostly from the surface return flow of the Meridional Overturning Circulation and the North Equatorial Current which converge and accelerate through the Grenada Passage. The vertical shear of this inflow is enhanced by an eastward undercurrent, which flows along the south American Coast between 100 and 250 m depth. The shallow eddies (less than 200 m depth) formed in the vicinity of the Grenada Passage get rapidly deeper (down to 1000 m depth) and stronger by their interaction with the deep interior flow of the Subtropical Gyre, which enters through passages north of St. Lucia. These main eastern Caribbean inflows merge and form the southern Caribbean Current, whose baroclinic instability is responsible for the westward growth and strengthening of these eddies from the Venezuela to the Colombia Basin.(3) Eddies of lesser strength are produced in other regions of the Caribbean Sea. Their generation and growth is also linked with instability of the local currents. First, cyclones are formed in the cyclonic shear of the northern Caribbean Current, but appear to be rapidly dissipated or absorbed by the large anticyclones coming from the southern Caribbean. Second, eddies in the Cayman Sea, which impact the Yucatan region, are locally produced and enhanced by barotropic instability of the deep Cayman Current.(4) The role of the North Brazil Current (NBC) rings is mostly to act as a finite perturbation for the instability of the mean flow. Their presence near the Lesser Antilles is ubiquitous and they appear to be linked with most of the Caribbean eddies. There are some evidences that the frequency at which they form near the Grenada Passage is influenced by the frequency at which the NBC rings impinge the Lesser Antilles. But large Caribbean eddies also form without a close influence of any ring, and comparison between simulations shows that mean eddy kinetic energy and eddy population in the Caribbean Sea are not substantially different in absence or presence of NBC rings: their presence is not a necessary condition for the generation and growth of the Caribbean eddies.  相似文献   

7.
8.
The northern Bay of Bengal velocity-depth profiles do not follow the velocity-depth curve for the North Atlantic volcanic margins, and only partially the Kerguelen plume velocity-depth curves. Compared with the South China Sea northern margin proxy, we still suggest that the Bay of Bengal crust is thinned continental crust intruded by post-rifting volcanics, as also shown by the interpretation of the numerous high-quality deep multichannel seismic profiles we collected there. What was supposed to be underplating might be sills intruded through the lower thinned continental crust.  相似文献   

9.
台风莫拉克、天鹅和艾涛的引导流及相互作用研究   总被引:2,自引:0,他引:2  
通过2009年台风莫拉克、天鹅和艾涛的个例研究,分析了使用涡旋分离方法移除涡旋环流并计算台风环境引导流的可行性。利用涡旋分离技术,可以非对称地移除台风涡旋环流,并能进一步分析台风间的相互作用,发现天鹅和艾涛主要对莫拉克有向北的引导作用,天鹅的路径气旋式旋转主要是由于莫拉克环流的作用,莫拉克环流对艾涛有着向北的引导作用,而天鹅和艾涛之间的相互作用相对较小。  相似文献   

10.
During cruises 71-A-12 and 73-A-3 of the R/V “Alaminos” eighty-six samples of suspended matter at eleven near-bottom stations in the Gulf of Mexico and northwestern Caribbean Sea were collected, and simultaneously, values for light scattering were measured. Selected samples of the suspended matter were analyzed for particulate aluminum, silicon, iron, calcium, magnesium, organic carbon and inorganic carbon. The results indicate that a permanent but highly variable near-bottom nepheloid layer exists in the Gulf of Mexico but not in the northwestern Caribbean Sea. Average total-suspended loads in the Gulf of Mexico nepheloid layer are two times higher than in the clear water above the nepheloid layer.Since there is a significant increase in the alumino-silicate fraction and a corresponding decrease in the organic fraction of the suspended matter in the nepheloid layer relative to the overlying water, it appears that sediments are the most probable source of the increased concentrations of suspended matter in the nepheloid layer. This hypothesis is supported by X-ray diffraction analyses on the nepheloid material collected at one station which show the same mineral assemblages as the underlying sediments.Time studies over periods of one week and one and one-half years showed large total-suspended-matter variations which indicate that non steady-state processes, primarily vertical eddy diffusion and possibly advection, are controlling the distribution of suspended matter in the nepheloid layer.  相似文献   

11.
Currents in the Taiwan Strait as observed by surface drifters   总被引:2,自引:0,他引:2  
The trajectories of 110 satellite-tracked surface drifters from 1989 to 2007 were analyzed to elucidate near-surface circulation in the Taiwan Strait. Although the summer circulation observed generally agrees with previous studies, several aspects of the winter circulation were revealed by the analyses. Unlike many earlier studies, which have suggested that a northward (southward) current prevails in the eastern (western) part of the Taiwan Strait during the northeast monsoon season, this study shows that almost all winter drifters that entered the Taiwan Strait eventually moved southward. Inside the Taiwan Strait, northward moving tracks can only be found in the Penghu Channel. After passing the Penghu Channel, the drifters were blocked by the northeast monsoon wind and the Yun-Chang Rise, and turned southward. None of the drifters flowed persistently northward through the Taiwan Strait in winter. In the southern Taiwan Strait, three typical patterns of circulation were observed for the winter trajectories—the “throughflow” pattern that enters the South China Sea flowing westward along the slope; the loop current pattern that circulates anticyclonically and returns to the Kuroshio; and the blocked intrusion pattern that penetrates into the Taiwan Strait through the Penghu Channel.  相似文献   

12.
We discussed the branching and joining of the Tsushima Current around the Oki Islands, based on ADCP and CTD measurements carried out in June 1990 by the quadrireciprocal method (Katoh, 1988). The volume transport of the northeastward current northwest of the Izumo Coast was about 2 Sv. The triple-branch structure of the Tsushima Current was obscure there. This northeastward current divided into the eastward and northward currents, with volume transports of 0.5 Sv and 1.5 Sv, respectively, at the west entrance of the Oki Strait. Most of the first branch of the Tsushima Current seemed to be separated again from the other confluent branches and to pass through the Oki Strait as this eastward current. The northward current was composed of the second and the third branches of the Tsushima Current. It detoured the Oki Islands, and almost all of it returned south to the Tajima Coast. In the vicinity of the Tajima Coast, the eastward current was abruptly strengthened through the confluence of the southward one which was originated from the northward current west of the Oki Islands. This showed that the first branch finally joined the compound of the second and the third branches detouring the Oki Islands. Between the Oki Strait and the Tajima Coast, the two-layer structure of currents was clearly found.  相似文献   

13.
This paper presents results of two-dimensional seismic mapping of the northern East China Sea Shelf Basin. Various igneous features such as sills, volcanic edifices and stocks were identified by the geophysical exploration. The sills are most common, and are observed at more than 90 locations. Most mapped sills in the study area are characterized by high-amplitude continuous reflections with distinct terminations. Saucer- and cup-shaped sills are observed locally. The stocks are discordant (nearly vertical) igneous bodies and they are characterized by seismic transparency, with upturned host rocks and uplifted overburden. The volcanic edifices and/or necks consist of irregular mounds and peaks and are characterized by strong positive top reflections with chaotic internal facies. The oldest igneous activity in the northern East China Sea Shelf Basin is Early Cretaceous (123.3 ± 3.7). This igneous activity coincides with those observed in eastern China which has been related mainly to the subduction of the Pacific Plate beneath Eurasia Plate. The Miocene igneous activity is well constrained based on seismic stratigraphic relationships within the folded stratigraphy, age dating, and the occurrence of igneous sills. The timing of this intrusion is coincident with the intensive igneous activity as previously suggested for the eastern China. Igneous rocks can produce hydrocarbon traps, reservoirs and they can act as a seal, and therefore are of great importance in petroleum study.  相似文献   

14.
We estimated the northward heat flux through the eastern channel of the Bering Strait during the ice-free seasons between 1999 and 2008. This is likely about half of the total heat flux through the strait. The net volume transport and heat flux through the eastern channel of the strait were estimated from multiple linear regression models with in-situ/satellite remotely sensed datasets and NCEP reanalysis 10 m wind. The net volume transport was well explained by the west-east slope of sea level anomaly and NNW wind component at the strait. On the heat flux, the contributions of both barotropic and baroclinic components were taken into account. Estimated volume transport and vertical profile of temperature were used to calculate northward heat flux through the eastern channel of the strait. The magnitude of the estimated heat flux is comparable to estimates from in-situ measurements. Averaged heat flux in the eastern Bering Strait between 2004 and 2007 was about 1.9 times larger than that between 2000 and 2003. Maximum heat flux occurred in 2004, and same magnitude of heat flux was estimated from 2005 to 2007. This resulted not only from the increase in northward volume transport but also anomalous warm water intrusion from the Bering Sea. Our results suggest a candidate among the important parameters controlling heat budget, which contributes to the Arctic sea ice reduction, whereas more studies are required to confirm that this mechanism is actually responsible for the interannual and longer timescale variability.  相似文献   

15.
The large marine ecosystem (LME) governance framework was developed to address the complexity inherent within the Wider Caribbean Region with respect to the region's shared living marine resources. The framework is adaptable to all multi-scale living marine resource situations and provides a basis for incremental implementation of interventions. Parts of the overall governance framework can be targeted for sub-framework development and strengthening through institutional reforms and capacity building. Three examples, the Eastern Caribbean flyingfish fishery, marine protected area (MPA) management and the Eastern Caribbean tuna fishery, are used to illustrate the application of the framework in facilitating and assessing governance effectiveness in the Caribbean. In each case, the purpose is to show the different governance questions that must be addressed at policy, strategy and action levels to make up a complete governance arrangement and how these are distributed among several levels on the institutional scale that typically occur in regional marine resource governance.  相似文献   

16.
The Upper Triassic — Lower Jurassic Kap Stewart Formation (Jameson Land, East Greenland) has been studied by a combination of sedimentological and organic geochemical methods (LECO/Rock Eval, sulphur, gas chromatography) in order to assess the hydrocarbon source potential of the abundant and extensive lacustrine shale intervals present in the formation.The organic matter in the shales is a mixture of algal and higher plant remains (type I and III kerogen). An organic assemblage dominated by algal material, having a rich oil potential, occurs in an interval approximately 10–15 m thick in the uppermost part of the formation. This interval has an organic carbon content up to 10% and Hydrogen Index values up to 700. The interval is consistently traceable along the exposed margins and the central part of the basin. The deposition of the uppermost shale interval coincided with the largest expansion of the lake, during a period with a stratified water column and anoxic bottom-water conditions.Locally the rocks exposed are thermally postmature due to the thermal influence of dolerite sills which intruded the Kap Stewart Formation in Tertiary time. However, the organic-rich shale interval is beyond the influence of the sills and indicates a maturity prior to or in the early stages of oil generation.Calculations of the generative potential of the lacustrine source rocks suggest that significant amounts of petroleum may have been generated in those sediments which have undergone sufficient burial in the southern and central part of the basin. Here, the contemporaneously deposited delta front and barrier island sandstones can thus be considered as potential targets for future hydrocarbon exploration. This type of play may also be of importance in other North Atlantic basins with a similar basin history.  相似文献   

17.
Compared to the Pacific Ocean, tsunamis are rare both in the Atlantic and Indian Oceans. However, the December 26, 2004, tsunami demonstrated that, no matter how rare they may be, when a major tsunami occurs, it could be very disastrous. The most basic information in tsunami warning center requires are charts showing tsunami travel times to various locations around the rim of the ocean. With this in mind, a tsunami travel time atlas for the Atlantic Ocean is in preparation. The Caribbean Sea is also included in this Atlas, as it is more or less a part of the Atlantic Basin.  相似文献   

18.
Compared to the Pacific Ocean, tsunamis are rare both in the Atlantic and Indian Oceans. However, the December 26, 2004, tsunami demonstrated that, no matter how rare they may be, when a major tsunami occurs, it could be very disastrous. The most basic information in tsunami warning center requires are charts showing tsunami travel times to various locations around the rim of the ocean. With this in mind, a tsunami travel time atlas for the Atlantic Ocean is in preparation. The Caribbean Sea is also included in this Atlas, as it is more or less a part of the Atlantic Basin.  相似文献   

19.
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive “metabolic” aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and δ13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.  相似文献   

20.
We examined inflow through Unimak Pass (<200 m deep), which is the only major connection between the shelves of the North Pacific Ocean and the eastern Bering Sea. Geostrophic transport was generally northward from the Gulf of Alaska into the Bering Sea. The flow through the pass appeared to be modulated by the seasonal cycle of freshwater discharge. On shorter time scales, transport also was affected by semi-daily variations in tidal mixing. This effect was significant and not anticipated. Near-bottom currents, measured from moorings, were maximum during winter, and significantly correlated (r=0.7) with the alongshore winds. Although the flow through Unimak Pass transported some nutrients from the North Pacific Ocean, the Gulf of Alaska shelf is not the major source of nutrients to the Bering Sea shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号