首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An equation of heat transport in the Jovian magnetosphere is formulated and solved in the L range between 2 and 7. Sources of thermal energy include the heating associated with inward radial diffusion and a hypothetical heat supply originating from Io's dynamo action. The principal sink of the thermal energy is charge exchange in Io's hydrogen torus. In order to explain the density and temperature profile reported by Frank et al. (1976), the presence of the heat source at Io is essential and the density of the torus hydrogen has to be considerably lower than the value inferred from Lα observations by Carlson and Judge (1975). Radial diffusion represents the principal heating mechanism for plasma at very low L values.  相似文献   

2.
PL whistlers     
Simultaneous ground and satellite VLF observations together with raytracing studies clearly establishes the existence of ground observed PL whistlers. The dynamic spectrum (?-ν-t shape) of observed PL whistlers may be reproduced exactly by raytracing in TLG magnetospheric models consistent with lower ionosphere, topside ionosphere and equatorial density measurements. The Transition Level Gradient (TLG) model is based on the observation that the transition level altitude increases towards the plasmapause (Titheridge, 1976). PL ground whistlers (i) are observed downgoing over large latitudinal ranges, for up to 2000 km of satellite travel, by ISIS II at 1400 km altitude, (ii) have almost the same dynamic spectrum over the entire latitudinal range observed by ISIS II, (iii) are indistinguishable from ducted whistlers over the observed frequency range (i.e. linear Q for ? < 10 kHz), (iv) have nose frequencies > 16 kHz, (v) at 1400 km altitude have a lower latitudinal cutoff at L ~ 2 and a higher latitudinal cutoff between L ~ 3 and L ~ 4 and (vi) probably only occur at night-time during or immediately following disturbed magnetic activity.  相似文献   

3.
Simulation technique for whistler mode signal propagating through inhomogeneous plasma using WKB approximation has been developed (Singh, K., Singh, R.P., Ferencz, O.E., 2004. Simulation of whistler mode propagation for low latitude stations. Earth Planet Space 56, 979-987). In the present paper, we have used it for the analysis of recorded signals at low latitudes and estimated the nose frequency, which is not observed on the dynamic spectra. At low latitudes nose frequency is ∼100 kHz or more and therefore it is absent in the dynamic spectra due to attenuation of the signal at higher frequencies. The importance of nose frequency is in determining the exact path of propagation, which is required in probing of ambient medium. It is shown that the method permits to study the nose frequency variation, it can be used to deduce physical parameters as the global electric field. A case study permits to get a reasonable value of the electric field, which up to now could not be done at very low latitude.  相似文献   

4.
Using the results from special observations, the storm-time effects on whistler characteristics at low latitudes were examined and found to agree with previous statistical studies. A short discussion is made on the link between spread-F irregularities and magnetospheric whistler ducts. The enhanced whistler activity is explained as a consequence of the stable whistler duct region during spread-F conditions.  相似文献   

5.
The effect of ions on whistler dispersion characteristics has been studied. It is shown that the significant changes in the dispersion characteristics of low-latitude whistlers are brought about by the presence of ions. The dispersions for Nainital (geomagnetic lat. 19°1'N) and Gulmarg (geomagnetic lat. 24°10'N) are found to peak around 800 Hz. The short whistler sonograms recorded at Nainital and Gulmarg have been analysed, using the complete dispersion equation and the effect of ions has been shown. At higher frequencies the dispersion is found to decrease steadily and becomes independent of ions. Some examples of short whistlers have been found whose characteristics do not conform to the general trend of low-latitude whistlers, and, on the other hand, these whistlers show a constant dispersion unaffected by ions up to a fairly low frequency and thereafter decrease sharply at lower frequencies.  相似文献   

6.
7.
It has been generally accepted up to now that giant pulsations (Pg) are auroral zone phenomena but here we present observations of a sequence of three Pg events on successive days at three stations well within the plasmasphere. Field line resonance behaviour is exhibited with one of the events clearly resonating at L ? 2.8. From the resonant frequency (10.4 mHz) equatorial mass densities are calculated and from these, and the measured azimuthai polarization at resonance, the inference is drawn that Pgs are oscillations in the fundamental guided poloidal mode. We suggest that the drift wave instability of the compressional Alfvén wave may be the source mechanism for Pgs and speculate how conditions for the instability may have arisen.  相似文献   

8.
The Voyager 1 observations of whistlers at Jupiter are summarized in order to provide a basis for further analyses of the density profile of the Io plasma torus as well as to support studies of atmospheric lightning at Jupiter. All the whistlers detected by Voyager I fell into three general regions in the torus at radial distances ranging between 5 and 6RJ. An analysis of the broadband wave amplitudes measured by the Voyager 1 plasma wave instrument and estimates of the peak whistler amplitudes imply that the grouping of whistlers was due to variations in the sensitivity of the receiver to the whistlers and not to variations in the source or propagation paths of the whistlers. The whistler dispersions are presented in statistical form for each of the three groups of events and analyzed in view of the structure of the Io plasma torus as determined by plasma measurements. The results of these analyses give source locations for the whistlers at the foot of the magnetic field lines threading the torus in both hemispheres and over a range of longitudes.  相似文献   

9.
An initial study of the behaviour of He+ ions in the mid-latitude plasmasphere is carried out by solving the time-dependent equations of continuity and momentum. Starting with a low He+ tube content, results are obtained for a period of 8 days. In the topside ionosphere there is an upflow of He+ during the day and downflow at night, for the sunspot maximum conditions considered. The downflow at night differs from the behaviour of H+ for these atmospheric conditions. However, little of the He+ produced in the daytime is lost by recombination at night; it is suggested that the supply of He+ to the mid-latitude plasmasphere is, in effect, an escape process for neutral helium.  相似文献   

10.
Based on all of the OGO-5 light ion density measurements (covering the period from March, 1968 to May, 1969), a definition of “isolated plasma regions” was employed to locate the most prominent patches of enhanced light ion densities in the midst of the depleted region, outside of the main plasmasphere. On the dayside, the distribution of these isolated plasma in L.T. vs. L coordinates was quite similar to that of the “detached plasma regions” by Chappell (1974a). On the nightside, however, the new distribution revealed more frequent occurrence of these regions. Elongated thick plasmatails produced during periods of sudden enhancement of convection electric fields and subsequentially thinning and corotating of the plasmatails during quieting periods, in general, could account for the statistical distribution as well as the individual events, such as those between March 27 and April 2, 1968 and Oct. 21 and Oct. 24, 1968. As demonstrated by Kivelson (1976), wave-particle interactions could produce tremendously complicated structures observed in the near vicinity of the plasmapause and far away from the plasmasphere. Examination of H+ and He+ density measurements for period of Aug. 12–Aug. 20, 1968 indicated that the density reduction of the plasmasphere during a magnetic storm was on the same order of magnitude as that obtained from whistler techniques during a magnetospheric substorm.  相似文献   

11.
Synoptic observations made on magnetic recording tape at Huancayo, Peru, at the magnetic dip equator, during the International Geophysical Year 1957–1958, were aurally reviewed at that time and no whistlers, hiss, or other emissions were heard. In view of the more recent observation of whistlers at geomagnetic latitudes as low as 12°, and in conjunction with a study of equatorial hiss observed in the topside ionosphere, these recordings have recently been reassessed by reducing them with modern real-time, digital spectrographic equipment. Although the observations were found to be of high quality, and to show the classical features of ground-wave and sky-wave propagation of sferics and VLF transmissions, again no evidence whatsoever of whistlers, hiss, or other emissions is found. Thus it is concluded that the whistlers observed at very low latitudes do not propagate subionospherically to the equator and it is confirmed that “hybrid” whistlers must be due to subionospheric propagation across the equator of the causative sferic rather than of the short whistler.  相似文献   

12.
A theoretical plasma is supposed to be contained between two perfectly conducting cylinders. A magnetic field from a hypothetical line pole is postulated because the metric coefficients have similar properties to those of a dipole field. It is found, as expected, that the asymmetric hydromagnetic eigenmodes involve coupling of torsion and compression. Nevertheless the behaviour is found to be still roughly like that of a uniform field model. The modes are found to be either roughly torsional or roughly compressional, and the roughly torsional eigenfrequencies are found to be insensitive to the eigenmode structure across the field lines. It is therefore suggested that estimates of micropulsation spectra from the axisymmetric toroidal mode in the dipole field may be fairly valid whatever the true longitude distribution of the micropulsations.  相似文献   

13.
14.
In this paper, the nonlinear dispersion relation for whistlers in the ionosphere has been derived and then the group travel time for an ion-cyclotron whistler from its source to an observer at the satellite has been theoretically calculated. It is seen that the nonlinear effect has some important contribution in the expression of group travel time. Our present analysis gives a more correct result than that obtained by Gurnett and others. From numerical estimations, it is found that the group travel time of whistler may be changed reasonably due to nonlinear interaction of the wave and the plasma of ionosphere.  相似文献   

15.
A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found to the problem, for a distribution of the plasma parameters typical of the Earth's plasmasphere. The solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main components of the field of registered standing SMS waves are the plasma oscillations along magnetic field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which should result in precipitation of the background plasma particles. This may be accompanied by ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.  相似文献   

16.
A conservative convection electric field model developed by Volland (1973) to describe the solar wind induced plasma flow within the inner magnetosphere is modified to include a noisy spatial component. Under steady state conditions such a random component will result in spatial irregularities in the thermal plasma density distribution in the vicinity of the plasmapause—particularly near dusk. Spatial irregularities in the convection can produce longitudinally restricted perturbations near the plasmapause some of which are detached from the main body of the plasmasphere. Temporal variations in the midnight to noon flow intensity are shown to produce elongated extensions of the plasmasphere known as plasmatails but even short period variations of the overall magnitude of the convection cannot produce longitudinally localized perturbations in the thermal plasma distribution. Convection models based on the 3 hr magnetic index Kp yield plasmasphere structures which are qualitatively similar to those based on shorter period variations, but the exact location at any given time of the plasmapause is dependent upon the characteristic time scale employed.  相似文献   

17.
Plasmaspheric hiss waves have been frequently invoked to explain the slow loss of the radiation belt electrons. However, the effect of hiss waves outside the plasmasphere on the radiation belt electrons remains unclear. Here, on the basis of Van Allen Probes observations and quasilinear simulations, we show that the hiss waves outside the plasmasphere are able to cause the significant precipitation loss of energetic electrons on a timescale of 1 day. In the event of interest, the hiss wave power spectra density reached up to \(10^{-6}~\mbox{nT}^{2}/\mbox{Hz}\), and the obtained pitch-angle diffusion coefficients are found to be \(10^{2}\)\(10^{4}\) times larger than the momentum and cross diffusion coefficients. During a period of 1 day, the modeled hiss waves caused the depletion of 300–500 keV electrons by up to 10 times. These results suggest that the hiss waves outside the plasmasphere should be taken into account in the future radiation belt modeling.  相似文献   

18.
Density distribution of plasmaspheric particles in the equatorial plane is derived from a model of plasmaspheric streaming, which may produce Sq current system in the lower ionosphere, and from one integral of motion, which seems to be generally valid for steady-state magnetospheric convection. The results satisfy not only the observed features of Sq variation but also the observed pattern of the density distribution in the magnetospheric equatorial plane during quiet periods.  相似文献   

19.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

20.
The plasmasphere sandwiched between the ionosphere and the outer magnetosphere is populated by up flow of ionospheric cold (∼1 eV) and dense plasma along geomagnetic field lines. Recent observations from various instruments onboard IMAGE and CLUSTER spacecrafts have made significant advances in our understanding of plasma density irregularities, plume formation, erosion and refilling of the plasmasphere, presence of thermal structures in the plasmasphere and existence of radiation belts. Still modeling work and more observational data are required for clear understanding of plasmapause formation, existence of various sizes and shapes of density structures inside the plasmasphere as well as on the surface of the plasmapause, plasmasphere filling and erosion processes; which are important in understanding the relation of the process proceeding in the Sun and solar wind to the processes observed in the Earth's atmosphere and ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号