首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M.G. Heaps  J.N. Bass  A.E.S. Green 《Icarus》1973,20(3):297-303
The planet Jupiter, like the Earth, possesses a magnetic field, and, therefore, auroral activity is very likely. In this work, the auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Integrated column intensities of several kiloRayleighs are obtained for the various vibrational levels of the Lyman and Werner bands of H2, as well as the triplet continuum a3Σg+b3Σu+. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration. Atomic hydrogen emissions are due mainly to dissociative excitation of molecular hydrogen rather than direct excitation.  相似文献   

2.
Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.  相似文献   

3.
The planet Jupiter possesses a magnetic field and is surrounded by a magnetosphere. The occurrence of auroral and polar cap phenomena similar to those found on earth is very likely. In this work auroral and polar cap emissions in a model Jovian atmosphere are determined for proton precipitation. The incident protons, which are characterized by representative spectra, are degraded in energy by applying the continuous slowing down approximation. All secondary and higher generation electrons are assumed to be absorbed locally and their contributions to the total emissions are included. Volume emission rates are calculated from the total direct excitation rates with corrections for cascading applied. Results show that most molecular hydrogen and helium emissions for polar cap precipitation are below the ambient dayglow values. Charge capture by precipitating protons is an important source of Lyman α and Balmer α emissions and offers a key to the detection of large fluxes of low energy protons.  相似文献   

4.
Measurements on board the low altitude polar orbiting satellite Intercosmos-17 /nearly circular orbit h = 500 km, i = 83.5°/ have shown relatively high fluxes of high energy electrons /Ee > 100 MeV and Ee > 300 MeV respeetively/ at minimum-B-equator. Computation of the electron production spectra assuming the interaction of high energy protons of the inner radiation belt with residual atmosphere is made. The considered mechanism can explain the enhanced flux of high energy electrons registered in the Brazil magnetic anomaly.  相似文献   

5.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

6.
V. V. Zharkova 《Solar physics》2008,251(1-2):641-663
In this paper the mechanisms responsible for observational features associated with sunquakes induced by different classes of solar flares are compared. The role of high-energy particle beams via Coulomb and Ohmic heating of the ambient plasma and nonthermal excitation and ionization is explored for different beam parameters at various atmospheric depths. On the one hand, only hard electron beams with high-energy fluxes are found producing extensive nonthermal hydrogen ionization, four orders of magnitude higher than in the quiet atmosphere. This excess ionization leads to the white-light flares associated with the seismic emission appearing simultaneously with hard X-ray emission and, consequently, to a strong increase of Ni-line emission observed as the seismic emission measured with the holographic technique. On the other hand, the ambient plasma hydrodynamic response to heating by such beam electrons forms hydrodynamic shocks just below the transition region, in the upper chromosphere, and they travel with supersonic velocity for up to five minutes before reaching the photosphere. These hydrodynamic responses caused by the beam electrons are maximized in the lower chromosphere for moderate electron beams because of their smaller Ohmic losses in the upper atmosphere compared to those for higher-energy electron beams whose bulk energy is deposited in the transition region. These shocks caused by electron beams can explain the observations of seismic emission by time?–?distance (TD) diagrams and the holographic method in M- and C-class flares, whereas to account for the quakes in X-class flares, high-energy quasi-thermal protons or power-law proton beams either by themselves or blended with electron beams are the most likely agents. Nonthermal ionization and excitation of lower atmospheric levels during the beam injection followed by thermo-conductive heating after the beam is stopped can contribute to the seismic signatures observed with the holographic technique caused by strong nonthermal ionization and back-warming heating occurring in the shock while it loses its energy by optically-thick radiation in the photospheric lines and continua.  相似文献   

7.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

8.
9.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

10.
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 10?2 and the mean energy per neutral hydrogen atom pair is calculated.  相似文献   

11.
The total photoelectron and secondary electron fluxes are calculated at different times and altitudes along the trajectory of Mars Global Surveyor passing through the nightside and dayside martian ionosphere. These results are compared with the electron reflectometer experiment on board Mars Global Surveyor. The calculated electron spectra are in good agreement with this measurement. However, the combined fluxes of proton and hydrogen atom as calculated by E. Kallio and P. Janhunen (2001, J. Geophys. Res.106, 5617-5634) were found to be 1-2 orders of magnitude smaller than the measured spectra. We have also calculated ionization rates and ion and electron densities due to solar EUV, X-ray, and electron-proton-hydrogen atom impacting with atmospheric gases of Mars at solar zenith angles of 75°, 105°, and 127°. In the vicinity of the dayside ionization peak, it is found that the ion production rate caused by the precipitation of proton-hydrogen atom is larger than the X-ray impact ionization rate while at all altitudes, the photoionization rate is always greater than either of the two. Moreover, X-rays contribute greatly to the photoelectron impact ionization rate as compared to the photoion production rate. The calculated electron densities are compared with radio occultation measurements made by Mars Global Surveyor, Viking 1, and Mars 5 spacecraft at these solar zenith angles. The dayside ionosphere produced by proton-hydrogen atom is smaller by an order of magnitude than that produced by solar EUV radiation. X-rays play a significant role in the dayside ionosphere of Mars at the altitude range 100-120 km. Solar wind electrons and protons provide a substantial source for the nightside ionosphere. These calculations are carried out for a solar minimum period using solar wind electron flux, photon flux, neutral densities, and temperatures under nearly the same areophysical conditions as the measurements.  相似文献   

12.
Incoherent scatter measurements of electron density and vertical O+ fluxes over Millstone Hill (42.6°N, 71.5°W) previously have been used to study the exchange of plasma between the ionosphere and the magnetosphere. During the daytime there is usually an upward flux of O+ ions above about 450 km that can be measured readily and equated to the escaping proton flux. At night the O+ fluxes usually are downwards everywhere owing to the decay of the F-layer, and it becomes difficult to detect effects due an arriving proton flux. In a new study of the nighttime fluxes, appeal was made to the estimated abundance of the H+ ions in the upper F-region which can be extracted from the observations. From a study of the behavior on 25 days over the interval 1969–1973, we conclude that in the daytime the flux always is upwards and close to its limiting value. This situation persists throughout the night in summer at times of high sunspot activity (e.g., 1969). There is a period of downward flux prior to ionospheric sunrise on winter nights whose duration increases with decreasing sunspot number. As sunspot minimum is approached (e.g., in 1973) downward fluxes are encountered for a brief period prior to ionospheric sunrise in summer also. Thus, over most parts of sunspot cycle, it appears that the protonosphere supplies ionization to the winter night ionosphere, while being maintained from the summer hemisphere. This helps explain the smallness of the day-to-night variations reported for the electron content of magnetospheric flux tubes near L = 4 in the American sector.  相似文献   

13.
We report simultaneous observations of intense fluxes of quasi-trapped energetic electrons and substantial enhancements of ionospheric electron concentration (EC) at low and middle latitudes over the Pacific region during the geomagnetic storm on 15 December 2006. Electrons with energy of tens of keV were measured at altitude of ~800–900 km by POES and DMSP satellites. Experimental data from COSMIC/FS3 satellites and global network of ground-based GPS receivers were used to determine height profiles of EC and vertical total EC, respectively. A good spatial and temporal correlation between the electron fluxes and EC enhancements was found. This fact allows us to suggest that the quasi-trapped energetic electrons can be an important source of ionospheric ionization at middle latitudes during magnetic storms.  相似文献   

14.
A new solution of the magnetospheric heat equations capable of covering the whole region from 300 km along a field line to the equatorial plane has been achieved by adapting the searching procedure of Murphy (1974). It has been found that the protonospheric heat reservoir is sufficient to maintain Te >Tn down to the height of the F2-peak electron density all through the night at mid-latitudes. Full solution of the equations has also shown that Ti >Te in the protonosphere at night and the ions constitute a significant source of heat for the electrons.  相似文献   

15.
The processes by which energetic electrons lose energy in a weakly ionized gas of argon are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiences are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying up to 10?2.  相似文献   

16.
《Icarus》1986,67(3):484-514
Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. Because there are few measurements of the solar flux at levels above 60 km, a radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in the Venus mesosphere (60–100 km). This model accounts for all sources of extinction known to be important there, including absorption and scattering by CO2, H2O, SO2, H2SO4 aerosols and an unidentified UV absorber. The distributions of these substances in our model atmosphere were constrained by a broad range of spacecraft and ground-based observations. Above the cloud tops, (71 km), near-infrared CO2 bands absorb enough sunlight to produce globally averaged heating rates ranging from 4° K/day (24-hr period) at 71 km to more than 50° K/day at 100 km. The sulfuric acid aerosols that compose the Venus clouds are primarily scattering agents at solar wavelengths. These aerosols reflect about 75% of the incident solar flux before it can be absorbed by the atmosphere or surface. The unknown substance that causes the observed cloud-top ultraviolet contrasts is responsible for most of the absorption of sunlight within the upper cloud deck (57.5−71 km). This substance absorbs almost half of the sunlight deposited on Venus and contributes to solar heating rates as large as 6° K/day at levels near 65 km. With the exception of CO2, all of the important sources of solar extinction have concentrations that vary with position, and, in general, these concentrations are not well known. To determine the sensitivity of the model results to these uncertainties, the concentrations of these opacity sources were varied in the model atmosphere and solar fluxes were computed for each case. These tests indicate that CO2 dominates the solar absorption at levels above the cloud tops and that heating rates are relatively insensitive to the distribution of other sources of extinction there. Within the upper cloud deck, uncertainties in the distribution of the UV absorber and the H2SO4 aerosols can produce heating rate errors as large as 50% at some levels. Diurnally averaged solar heating rates for the nominal opacity distribution were computed as a function of latitude at altitudes between 55 and 100 km, where most of the solar flux is deposited. The zonal wavenumber 1 (diurnal) and zonal wavenumber 2 (semidiurnal) components of the diurnally varying solar heating rates were also computed in this domain. These results should be sufficiently reliable for use in numerical dynamical models of the Venus atmosphere.  相似文献   

17.
Electron spectra obtained during the flight of Black Brant VB-31 on August 17, 1970 through a stable aurora to a height of 268 km have been analyzed in detail to obtain the pitch angle distributions from 25 to 155° and the electron energy distributions over an energy range of 18 keV to 20 eV through the region of atmospheric interaction down to 97 km. Backscatter ratios for 140° pitch angle range from 0.065 for 18 keV electrons to 0.22 for 1 keV electrons. Backscatter of lower energy electrons decreases with atmospheric depth below 200 km. The effect of the interactions between auroral electrons and the atmosphere is such as to give a peak in electron flux which moves progressively to higher energies with penetration depth. The secondary electron flux increases monotonically with height up to 200 km. The secondary electron spectrum can be approximated by an energy power over small energy ranges but its form is somewhat dependent on height and on the primary electron spectrum.  相似文献   

18.
The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of “non-absorbed” electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10–15%.  相似文献   

19.
《Icarus》1987,72(3):604-622
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes from 0 to 400 km. Ionization due to both galactic cosmic rays and electron precipitation from the Saturnian magnetosphere is considered. This ionization results in free electrons and the primary ions N2+ and N+ which are then rapidly converted into secondary ions such as H2CN+ and NH4+ which in turn form ion clusters such as H2CN+(HCN)n and NH4+(NH3)m. In contrast to the atmospheres of Venus and Earth, we find no species in the Titan atmosphere that lead to the formation of appreciable concentrations of negative ions. Consequently, the predicted conductivity is quite different in that a substantial concentration of electrons exists all the way to the surface of Titan. The ubiquitous aerosols observed in the Titan atmosphere also play an important role in determining the charge distribution in the atmosphere. At altitudes above 100 km and for aerosol concentrations above approximately 10/cc, the recombination of electrons and positive ions is controlled by the recombination on the surface of the aerosols rather than by the gas-kinetic recombination rate. For small aerosol concentrations, the ratio of the number of charges per particle to the radius of the particle is approximately 30, for radii in microns. This value is similar to that obtained by previous investigators for terrestrial noctilucent clouds. Because the aerosol particles are highly charged, coagulation is inhibited, particle sizes are smaller, and their settling rates are reduced. As a consequence, the optical depth of the atmosphere is much higher than it would be if the particles were uncharged.  相似文献   

20.
The ambient photoelectron spectrum above 300 km has been measured for a sample of 500 AE-E orbits during the period 13 December 1975 to 24 February 1976 corresponding to solar minimum conditions. The 24 h average and maximum ΣKp were 19 and 35, respectively. The photoelectron flux above 300 km was found to have an intensity and energy spectrum characteristic of the 250–300 km production region only when there was a low plasma density at the satellite altitude. Data taken at local times up to 3 h after sunrise were of this type and the escaping flux was observed to extend to altitudes above 900 km with very little modification, as predicted by several theoretical calculations. The flux at high altitudes was found to be extremely variable throughout the rest of the day, probably as a result of attenuation and energy loss to thermal plasma along the path of the escaping photoelectrons. This attenuation was most pronounced where the photoelectrons passed through regions of high plasma density associated with the equatorial anomaly. At altitudes of 600 km, the photoelectron fluxes ranged from severely attenuated to essentially unaltered—depending on the specific conditions, Photoelectron fluxes from conjugate regions were often less attenuated than those observed arriving from the high density regions immediately below. Comparison of the observed attenuations, photoelectron line broadening, and energy loss due to coulomb scattering from the thermal plasma with rough calculations based on stopping power and transmission coefficients of thermal plasma for fast electrons yielded order of magnitude agreement—satisfactory in view of the large number of assumptions necessary for the calculations. Overall, the impression of the high altitude photoelectron flux which emerges from this work is that the fluxes are extremely variable as a consequence of interactions with the thermal plasma whose density is in turn affected by electrodynamic and neutral wind processes in the underlying F region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号