首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
科学数据共享领域的政策规范和法律规范   总被引:1,自引:0,他引:1  
科学数据共享活动中有数据产生与汇交、数据保管与使用、数据共享评估与监督、数据共享保障四个领域,针对性四个领域出台不同的政策规范和建立不同的法律制度,规范科学数据共享领域的社会关系。  相似文献   

5.
Oceans '81     
  相似文献   

6.
7.
Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth’s climate system, the El Niño–Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal reversal of the wind forcing, such as the monsoon system in the Indian Ocean, phenology-based mean anomalies of physical variables help refine evaluation of the mechanisms driving the biological responses and provide a more comprehensive understanding of the integrated processes.  相似文献   

8.

The spectrum of internal gravity waves in the atmosphere and oceans is sufficiently intense that nonlinear interactions must occur, if these waves are analyzed in Eulerian coordinates as is usually done. As it happens, however, if these waves are analyzed in Lagrangian coordinates the most important nonlinearity can be entirely avoided: it is an Eulerian mathematical construct only, not a physical process. The mathematical basis for this assertion is developed here, and some of its consequences are discussed. Among the latter is a questioning of the validity of standard Eulerian eikonal methods of calculating ray paths and related functions in a multiwave environment, discussed in an appendix.  相似文献   

9.
Within the context of atmospheric and oceanic fluid dynamicsthe problems of nonlinear stability and instability, particularlythe Arnol'd second type nonlinear stability, are surveyed.The stability criteria obtained by means of the energy-Casimirand energy-Lagrange methods are presented for a varietyof models, the estimates for various generalized perturbationenergy and enstrophy are given. Potential applications of thesecriteria are shown in the estimation of bounds on the perturbationenergy and enstrophy, in the diagnostic study of the persistence orbreakdown of jet flows in the middle and high latitudes, and in theverification of the validity of the tangent linear model in bothatmospheric dynamics and oceanography.Some further research results are also highlighted.  相似文献   

10.
Tsunami and its Hazard in the Indian and Pacific Oceans: Introduction   总被引:1,自引:0,他引:1  
The 2004 Indian Ocean tsunami caused an estimated 230,000 casualties, the worst tsunami disaster in history. A similar-sized tsunami in the Pacific Ocean, generated by the 1960 Chilean earthquake, commenced international collaborations on tsunami warning systems, and in the tsunami research community through the Tsunami Commission of International Union of Geodesy and Geophysics. The IUGG Tsunami Commission, established in 1960, has been holding the biannual International Tsunami Symposium (ITS). This volume contains selected papers mostly presented at the 22nd ITS, held in the summer of 2005. This introduction briefly summarizes the progress of tsunami and earthquake research as well as international cooperation on tsunami warning systems and the impact of the 2004 tsunami. Brief summaries of each paper are also presented.  相似文献   

11.
There has been an increasing recognition of the inter-relationship between human health and the oceans. Traditionally, the focus of research and concern has been on the impact of human activities on the oceans, particularly through anthropogenic pollution and the exploitation of marine resources. More recently, there has been recognition of the potential direct impact of the oceans on human health, both detrimental and beneficial. Areas identified include: global change, harmful algal blooms (HABs), microbial and chemical contamination of marine waters and seafood, and marine models and natural products from the seas. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans.  相似文献   

12.
I have examined over 1500 historical tsunami travel-time records for 127 tsunamigenic earthquakes that occurred in the Pacific and Indian Oceans. After subjecting the observations to simple tests to rule out gross errors I compare the remaining reports to simple travel-time predictions using Huygens method and the long-wave approximation, thus simulating the calculations that typically take place in a tsunami warning situation. In general, I find a high correspondence between predicted and reported travel times however, significant departures exist. Some outliers imply significantly slower propagation speeds than predicted; many of these are clearly the consequences of observers not being able to detect the (possibly weak?) first arrivals. Other outliers imply excessively long predicted travel times. These outliers reflect peculiar geometric and bathymetric conditions that are poorly represented in global bathymetric grids, leading to longer propagation paths and consequently increased travel times. Analysis of Δt, the difference between observed and predicted travel time, yields a mean Δt of 19 minutes with a standard deviation of 131 minutes. Robust statistics, being less sensitive to outliers, yield a median Δt of just 18 seconds and a median absolute deviation of 33 minutes. Care is needed to process bathymetry to avoid excessive travel-time delays in shallow areas. I also show that a 2×2 arc minute grid yields better results that a 5×5 arc minute grid; the latter in general yielding slightly slower propagation predictions. The largest remaining source of error appears to be the inadequacy of the point-source approximation to the finite tsunami-generating area.  相似文献   

13.
Excess222Rn standing crops have been calculated from bottom profiles obtained at 119 locations in the Atlantic and Pacific Oceans during the GEOSECS cruises. They range over more than two orders of magnitude with clear north-south and east-west patterns. The standing crops are inversely related to the sedimentation rate and the zones of highest standing crops are also areas which have a high coverage of manganese nodules.  相似文献   

14.
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped Kelvin wave, being deflected off the western boundary. The succession of warm and cold waters transferred by baroclinic waves during a cycle leaves the tropical ocean by radiation and contributes to western boundary currents. The main manifestation of the basin modes concerns the variability of the NECC, of the branch of the South Equatorial Current (SEC) along the equator, of the western boundary currents as well as the formation of remote resonances, as will be presented in a future work. Remote resonances occur at midlatitudes, the role of which is suspected of being crucial in the functioning of subtropical gyres and in climate variability.  相似文献   

15.
16.
王婷  马丽  李勇  黄建平 《中国地震》2006,22(3):321-326
将有限幂律公式(LPL)应用到传染型余震序列模型(ETAS)中,并对原ETAS模型加以改进。以台湾集集地震早期余震序列为例,对原ETAS模型与改进的ETAS模型进行了对比分析,结果表明改进的ETAS模型要优于原ETAS模型。  相似文献   

17.
The ocean is an important component of the globalenvironment and must not be ignored in the assessmentof environmental risks, even when attention is focusedon land surface issues. This paper addresses the useof space techniques for remote sensing of the ocean,in the context of how marine environmental risks maybe monitored. Since there are several significantdifferences between remote sensing over land and oversea, the techniques specific to ocean observation arefirst reviewed, identifying what can be measured fromspace and what are the sampling capabilities andinherent limitations. Ocean environmental risks arethen identified at global, regional and local scales,and serve as examples of how space techniques can beused to address them. Finally operationalenvironmental monitoring and risk management is shownto require an integrated approach using models andmeasurements from space and at sea.  相似文献   

18.
New Zealand Earthquake Forecast Testing Centre   总被引:1,自引:0,他引:1  
The New Zealand Earthquake Forecast Testing Centre is being established as one of several similar regional testing centres under the umbrella of the Collaboratory for the Study of Earthquake Predictability (CSEP). The Centre aims to encourage the development of testable models of time-varying earthquake occurrence in the New Zealand region, and to conduct verifiable prospective tests of their performance over a period of five or more years. The test region, data-collection region and requirements for testing are described herein. Models must specify in advance the expected number of earthquakes with epicentral depths h ≤ 40 km in bins of time, magnitude and location within the test region. Short-term models will be tested using 24-h time bins at magnitude M ≥ 4. Intermediate-term models and long-term models will be tested at M ≥ 5 using 3-month, 6-month and 5-year bins, respectively. The tests applied will be the same as at other CSEP testing centres: the so-called N test of the total number of earthquakes expected over the test period; the L test of the likelihood of the earthquake catalogue under the model; and the R test of the ratio of the likelihoods under alternative models. Four long-term, three intermediate-term and two short-term models have been installed to date in the testing centre, with tests of these models commencing on the New Zealand earthquake catalogue from the beginning of 2008. Submission of models is open to researchers worldwide. New models can be submitted at any time. The New Zealand testing centre makes extensive use of software produced by the CSEP testing centre in California. It is envisaged that, in time, the scope of the testing centre will be expanded to include new testing methods and differently-specified models, nonetheless that the New Zealand testing centre will develop in parallel with other regional testing centres through the CSEP international collaborative process.  相似文献   

19.
Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed \(\sim\) 2 mm h\(^{-1}\), convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4–5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.  相似文献   

20.
The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1) the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2) the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods) on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号