首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic pulsation Pi2 and substorm onset   总被引:1,自引:0,他引:1  
Coincidence between the onset of sudden brightening of the auroral arc in the auroral oval and the onset of Pi2 magnetic pulsation in low latitudes is examined based on the auroral data obtained at a chain of stations in Alaska and the Pi2 data obtained at the low-latitude station Onagawa. The result shows that the low-latitude Pi2 occurs almost simultaneously with the sudden brightening of the auroral arc, i.e. the onset of an auroral substorm (T = 0). It is concluded that the onset of substorms can be identified quite well with the onset of the low-latitude Pi2.  相似文献   

2.
The ground signatures of multiple onset substorms have been investigated in night-side magnetograms from low to high latitudes and in observations of auroral-zone electron precipitation. Pi 2 onsets at three widely spaced stations are used for accurate timing of each onset. It is found that an evening auroral arc brightens at the onset of each Pi 2 train, also in the case of weak pulsations before the first low-latitude positive bay onset. The latter onset is, on the other hand, associated with the initiation of a westward travelling surge, and field-aligned currents moving with the surge cause a similar westward movement of the magnetic signatures in subauroral and low-latitude magnetograms. At the arrival of a surge at an evening side observatory, the westward electrojet is displaced rapidly poleward, with a sharp increase in local bay activity and high-energy electron precipitation. The westward expansion of new activity appears as a continuous motion along the oval and is associated with a local poleward displacement of the westward electrojet. Consecutive surge initiation and low-latitude onsets do not, however, always occur progressively farther west. Thus, the development of the expansion phase consists of a series of intensifications and auroral surge formations at 10–20 min intervals. Near the time of maximum auroral-zone bay activity and apparently also when maximum westward extent is reached, the whole nighttime oval seems to be shifted poleward. Our findings are thus not consistent with the Wiens and Rostoker (1975) northward-westward stepping model. An alternative model is therefore presented based on the fundamental role of the westward travelling surge in carrying substorm activity westward along the oval. The associated field-aligned current system will perturb the pre-existing magnetospheric current wedge and cause positive bay increases at low latitudes and westward moving magnetic signatures at subauroral stations.  相似文献   

3.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

4.
The characteristic magnetic signatures of magnetospheric substorms both on the ground and in space have been determined from the analysis of ~1800 substorm events. The timing and properties of these events were objectively determined according to explicit mathematical criteria by a computer pattern-recognition program. This program processed daily magnetograms from a mid-latitude network of geomagnetic observatories.Ground data analyzed, using onsets determined in this manner, included the AE indices and individual magnetograms at different local times in the auroral zone and at midlatitudes. Superposed epoch averages of these data confirm the local time magnetic substorm signatures, determined in earlier studies of fewer events, and demonstrate the validity of the computerized onset determination procedure.Superposed epoch averages of the interplanetary magnetic field (IMF) associated with the onsets demonstrates both a distinct southward component prior to the onsets and a dependence of the substorm amplitude on the integrated preceding southward IMF flux. Superposed epoch averages of the tail lobe magnetic field magnitude and vector components demonstrates field magnitude changes and rotations in association with the substorm onsets. These lobe field changes are consistent with the growth-phase model of substorm activity and with variations in the magnetopause flaring angle.  相似文献   

5.
Explorer 34 observations of the low-latitude tail field beyond 25 RE are critically examined to see if the signature of the neutral-line formation is always visible during substorm expansion phases. Cases are found where a clear signature cannot be recognized. However, comparison of the simultaneous tail observations by multiple satellites suggests that the absence of a clear signature can largely be due to the spatial effect, namely due to the presence of the satellite outside the region where the local magnetic field condition is influenced by the neutral-line formation. On the other hand, evidences supporting the close association between the neutral-line and the expansion phase are found for substorm events having double expansion-phase onsets.  相似文献   

6.
We discuss the effects in ionospheric absorption of particle precipitation observed in the afternoon-early evening sector during substorms with onset in the midnight sector. All events considered here occurred during magnetically disturbed periods, Kp > 3. For many of the substorm events a smooth southward moving absorption bay is seen in the midnight and evening sectors about 1 h preceeding the onset. The magnetic pulsation activity is low during this preceding bay.

After substorm onset near magnetic midnight the precipitation region may expand with a sharp onset at the front towards the West in spatially confined regions at high and low L-values separately with about equal velocities. The observations are consistent with a model of westward expansion of the energetic electron precipitation in two regions, aligned parallel to the auroral oval, at high and low L-values of about L 6 and L 4.8.

The westward expanding absorption activity correlates well with local magnetic variations. In magnetic pulsations PiB events are seen at high latitudes simultaneously with the westward moving onsets while at low latitudes IPDP pulsations are observed during the active part of the absorption events. Later in the substorm event a slowly varying absorption event (SVA) is sometimes observed at the lower L-values, L 3–4.  相似文献   


7.
P. B. Zuo  F. S. Wei  X. S. Feng  F. Yang 《Solar physics》2007,242(1-2):167-185
The magnetic cloud boundary layer (BL) is a disturbance structure that is located between the magnetic cloud and the ambient solar wind. In this study, we statistically analyze the characteristics of the magnetic field B z component (in GSM coordinates) inside the magnetic cloud boundary layers as well as the relationship between the magnetic cloud boundary layers and the magnetospheric substorms based on 35 typical BLs observed by Wind from 1995 to 2006. It is found that the magnetic field B z components are more turbulent inside the BLs than those inside the adjacent sheath regions and the magnetic clouds. The substorm onsets are identified by the auroral breakups that are the most reliable substorm indicators by using the Polar UVI image data. The UVI data are available only for 17 BLs. The statistical analysis indicated that 9 of the 17 events triggered the substorms when BLs crossed the magnetosphere and that the southward field in the adjacent sheath region is a necessary condition for these triggering events. In addition, the SF-type BLs, which are named by their features of the B z components inside the BLs and adjacent sheath regions, can easily trigger the substorms during their passage of the magnetosphere. SF-type BLs are characterized by sustained strong southward magnetic fields persisting for at least 30 minutes in the adjacent sheath regions and at least one change in the polarity of the B z component inside the BL. In this study, 7 out of 8 such SF-type BL events triggered the substorm expansion phase, suggesting that the SF-type BLs are another important interplanetary disturbance source of substorms.  相似文献   

8.
Substorm onsets and intensifications are accompanied on a one-to-one basis by a Pi 2 magnetic pulsation burst. The source region for these pulsations is generally thought to lie in the region of substorm disturbance in the auroral oval. In this paper we outline the characteristics of Pi 2 pulsations in regions near the substorm enhanced electrojet but removed from the locale of the westward travelling surge. We show that a resonance region for the pulsations lies at the equatorwad edge of the westward electrojet, which in the evening sector marks the locus of the Harang discontinuity. Finally we show examples where the maximum amplitude of the Pi 2 is located at or equatorward of the southern border of the eastward electrojet or at the southern border of the westward electrojet. This is clear evidence for the coupling of wave energy into the L-shells far distant from the source of the energy. Mechanisms for Pi 2 generation are discussed in the context of the results presented in this paper.  相似文献   

9.
Measurements of the properties of Pi 2 pulsations along a magnetic meridian at high latitudes during a number of substorms have been analyzed for their relationship to the auroral electrojet. It is found that the maximum Pi 2 pulsation amplitudes are closely associated with the instantaneous position of the electrojet. That is, the average pulsation amplitude in the Pi 2 band as well as the amplitudes of pulsations at specific frequencies in the band have maximum amplitudes at latitudes close to the instantaneous electrojet location. Stations equatorward of the electrojet tend to observe a classical Pi 2 waveform concurrent with the onset of the substorm electrojet. Stations near the electrojet observe a broad spectrum of pulsations indicating a multiplicity of sources. Stations poleward of the initial electrojet position see little pulsation activity until the electrojet moves overhead. The appearance of large amplitude Pi 2 pulsations at a station which was poleward of the electrojet at the onset of a substorm appears to be coincident with the arrival of the poleward border of the electrojet.  相似文献   

10.
The structure of the geomagnetic tail during a substorm is investigated by combining plasma, magnetic field and energetic particle data from the ISEE-3 spacecraft in the deep tail with similar near-Earth observations from ISEE-1 and geostationary spacecraft. The observations can be interpreted in terms of the neutral-line model of substorms and indicate the formation of a closed-loop field region (“plasmoid”) following substonn onset, which is ejected down the tail. The plasmoid is observed to have a double-loop field structure. This may be the result of a second substonn onset occurring ≈ 25 min after the first, producing a further near-Earth neutral line and closed field loop. During the substorm recovery phase, the substonn neutral line moves tailward to beyond 130 RE from Earth by some 3 h after substorm onset.  相似文献   

11.
It is suggested that the pattern of three-dimensional substorm current circuit varies significantly even during the lifetime of a single substorm. This gives rise to quite complex time variations of the magnetic field at low latitude stations even for relatively isolated substorms. To verify this, three-dimensional current models with time dependent spatial variations are used to simulate one type of complex low-latitude “substorm signature”. It is shown that the utmost care should be exercised in determining different substorm phases on the basis of such a signature. The results indicate also that, in certain longitudes in the evening sector, one should expect distinct differences in characteristics between positive bays observed on the ground and at the synchronous distance.  相似文献   

12.
The development of an auroral absorption substorm has been studied using riometer measurements in the northern hemisphere. In the events studied, the onset is preceded by an absorption bay which begins to develop 1?112h before the onset. The bay may occur between L-values 3–19 and can cover as much as 150° of geomagnetic longitude, generally in the same longitudinal sector where the substorm breaks up and to the west of it. Whereas the substorm breaks up at or near the midnight meridian, the preceding bay may, in some geophysical conditions, appear in the afternoon sector. The preceding bay moves southward with a velocity between 60 and 600 ms?1, intensifying during the movement. This equatorward movement is consistent with an E × B drift in a cross-magnetotail electric field of between 0.5 and 1 mV m?1. The absorption at the onset exceeds that in the bay, and in the sector of break up the absorption shows a minimum just before the onset; to the west-of the break up the preceding bay continues its southward movement. In 14 cases studied, the sharp onset moved to the west with a velocity of 1–31 km s?1, median 6 km s?1. The onset was seen at higher L-values to the west than in the break-up sector. This applied also to the preceding bay. Whereas most onsets showed westward movement, in only about half of the cases studied was there movement towards the east. The injection area affected during the first minute of the onset was typically 1–2 L-value units, but as much as 30° of geomagnetic longitude. The onset later spread to cover 1–10 L-value units, and up to 130° of longitude. The contouring method used in the analysis of the data from the riometer is described in the Appendix.  相似文献   

13.
14.
On the basis of the 5.46 min IMF data and the 3-min data on magnetic field at polar cap station Alert, various characteristics of the interplanetary magnetic field and polar cap magnetic activity are examined for the purpose of separating the substorm precursors. It is shown that the most suitable characteristics toward this aim are the following: 1.σ(BZ)-index, defined as the 15-min sum of values of the southward (BZS) components of the IMF with an account of the negative gradient of the IMF vertical (BZ) component; and 2.PC(BZ)-index, defined as the 15-min sum of values of the polar cap magnetic disturbances, concerned with southward component BZS, with an account of variability of these disturbances. Every intense peak in the substorm activity is preceded by a corresponding increase in σ(BZ) and PC(BZ) indices. Thus, the conclusion is made that moderate and large substorms have a growth phase and as a result such substorms may be forecasted using the above indices.  相似文献   

15.
The convection electric field in the vicinity of the plasmapause in the midnight sector during magnetospheric substorms has been obtained on the basis of spectral analysis of Pc1 hydromagnetic (HM) waves observed at the low latitude station, Onagawa (Φ = 28.°3, Λ = 206.°8). Variations of the field are consistent for four independent substorm events studied. The calculation implies that the convection electric field increases westwards up to ~1.0 mV/m during the expansion phase of the substorms, changes polarity near the end of the expansion phase, and then points eastwards during the recovery phase.  相似文献   

16.
Pi2 pulsations are nowadays thought to be transient hydromagnetic signals associated with the build-up of a new stationary magnetosphere-ionosphere coupling system after the sudden formation of the substorm current wedge. To illustrate this transient response mechanism, we will first briefly describe the substorm current circuit. Subsequently, we will demonstrate that the gross characteristics of high-latitude Pi2 can be explained by the sudden switch-on of this current wedge during substorm onset if its westward expansion is taken into account. We will conclude by discussing some additional phenomena and processes (like conductivity and electron density gradients, kinetic Alfvén waves, ionospheric polarization electric fields, and mode coupling) which have to be included into a realistic model for Pi2 pulsations and thus timedependent magnetosphere-ionosphere coupling.  相似文献   

17.
This paper expands the earlier results of Rostoker and Samson (1981), who noted that there are two latitudinal areas of Pi 2 localization near the high latitude, substorm enhanced electrojets. The detailed study presented here outlines the morphology of the polarizations of the Pi 2's in and near the westward travelling surge. There are two latitudinal areas of Pi 2 localization. A poleward Pi 2 predominates within the surge and to the East, whereas an equatorward Pi 2 predominates equatorward and West of the surge. These Pi 2 localizations appear to correlate with the substorm enhanced westward and eastward electrojets respectively. However, the maximum in the Pi 2 power does not always coincide with the center of the electrojet. The poleward Pi 2 has largest amplitudes to the East of the head of the westward travelling surge. This Pi 2 shows a latitudinal polarization reversal from clockwise on the equatorside (viewed down on H-D plane) to counterclockwise on the poleside of a latitudinal demarcation line, which occurs just poleward of the initial breakup. This demarcation line is usually equatorward of the most poleward expansion of the surge. To the West of the surge front, where the equatorward Pi 2 predominates, there is again a latitudinal polarization reversal but in this case the polarization is counterclockwise equatorward and clockwise poleward of the demarcation line. This demarcation is equatorward of that for the poleward Pi 2, and appears to lie at the latitude of the initial breakup. Consequently, the westward travelling surge appears to mark the longitudinal transition from equatorward to poleward Pi 2. The elliptical polarization of the Pi 2's is most likely caused by azimuthai (longitudinal) expansion of the field-aligned currents in the surge, in association with reflection of the field-aligned current pulses from northern and southern high latitude ionospheres.  相似文献   

18.
We have examined the polarizations of local night impulsive (Pi2-type) hydromagnetic waves measured on the ground during a field campaign using three magnetometer stations spaced in latitude near L ~ 1.9. We find, contrary to our results at these latitudes for more continuous waves on the dayside, that the sense of rotation and phases of the waves do not change over the array for a given event. We also find, statistically, that the ellipse orientations in the horizontal plane change from the first quadrant (Northeast/Southwest direction) for pre-local midnight events, to the second quadrant (Northwest/Southeast direction) for post-local midnight events. The wave ellipticities are found to be left-handed, independent of local time. These latter two results cannot be reconciled quantitatively in terms of hydromagnetic wave resonance theory for low latitude Pi2 events, where the plasmapause acts like a resonance region for one of the high latitude Pi2 source frequencies. The results are qualitatively in agreement with expectations from the substorm electrojet current wedge concept.  相似文献   

19.
The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects associated with polar cap perturbations discussed by Svalgaard (1973). As well a region of equatorward flow appears at high latitudes near the dawn meridian, which appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.  相似文献   

20.
The ISIS-2 scanning auroral photometer surveyed the polar region during three successive passes on 18 December 1971, at times when Kp values were still high due to an intense magnetic storm which began on 16 December. Two very bright (IBC III) auroral substorm patterns were seen to correspond to rather weak magnetic substorms (about 300 γ in magnitude). A large spiral auroral pattern, with intensity of the order of 100 kR and a size of about 1300 km, was present in the polar cap; it gradually decreased in size and intensity during the interval 0200–0600 UT. A region of enhanced 3914 emission was present in the noon sector of the auroral oval between 0200 and 0400. The presence of the diffuse auroral belt is also evident at all local times during this period, extending down to about 61° corrected geomagnetic latitude in the midnight sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号