首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New geochemical and isotopic data on volcanic rocks spanning the period ~75–50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5–10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4–6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr–Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8–12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4–6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.  相似文献   

2.
In the southern Gregory Rift valley a series of transitional basalt, ferrobasalt, and benmoreite flows (1.65–1.4 Myr) is overlain by flood trachyte lavas (1.3–0.9 Myr). Mass balance calculations for major element compositions of rocks of this suite and their phenocrysts and microphenocrysts suggest that the ferrobasalts and benmoreites formed from magma resembling the most primitive basalt by closed system fractionation of plagioclase, clinopyroxene, olivine, titanomagnetite, and apatite. The trachytes formed from evolved magmas largely by alkali feldspar fractionation. Estimates of phenocryst and liquid densities and Rayleigh-law modelling of trace element contents support these conclusions. From Rayleigh-law modelling, we derived a set of effective distribution coefficients. Partial melting of crustal rocks or volatile transfer processes had no significant effect on the petrogenesis of this suite. The duration of the eruptive cycle, cooling time calculations, and mass balance calculations suggest that fractionation occurred in a magma reservoir with volume of at least 3 × 104 km3 during an interval of about 0.8 Myr. Temperatures during fractionation probably ranged from about 1200 °C to 900 °C, and pressures may have been roughly 5 to 8 Kb. We suggest that rift development was accompanied by large-scale injection of basaltic magma and dilation of the crust, extensive fractionation, preferential eruption of low-density and fluid trachytic flood lavas, and by several episodes of normal faulting.  相似文献   

3.
The volume and composition of volcanic rocks associated withthe Gregory rift are interpreted in the light of inversionsperformed on the REE concentrations of the most magnesian basalts.When the estimated volume of salic rock ({small tilde}88 000km3) is converted into basalt ({small tilde}792 000 km3) thetotal volume of basaltic melt generated over the last 30 Myis at least 924 000 km3, corresponding to an average rate ofmelt production of {small tilde}0•03 km3/yr and an averagemelt thickness of between 7 and 26 km everywhere beneath therift. The mean compositions of the basaltic magmas erupted withinthe rift and on the rift flanks during the Upper Oligocene andMiocene, the Pliocene, and the Quaternary are taken to be representativeof the average compositions of melts produced by fractionalmelting in the asthenospheric mantle. When the REE concentrationsof the observed average compositions are inverted they suggestthat much of the melt was produced in the depth and temperaturerange of the transition from garnet to spinel peridotite. Fora mantle potential temperature of {small tilde}1500C the topof the melting region predicted from the inversions is at {smalltilde}70 km beneath the rift axis and {small tilde}80 km beneaththe rift flanks. Within the rift zone the predicted thicknessof melt increases from the Upper Oligocene and Miocene to thePliocene and is always greater than that predicted for the riftflanks, and the timeaveraged thickness of melt predicted is0/5 km. To generate the observed volume of melt the asthenosphericmantle must continually upwell through the melting region (extendingfrom 70 to 150 km) with a vertical velocity of between 40 and140 mm/yr. The results suggest that, volumetrically and compositionally,magmatic activity associated with the Gregory rift is quantitativelyconsistent with a model of a mantle plume upwelling beneaththinned continental lithosphere. Predictions made by such amodel are in broad agreement with geophysical observations. * Present address/reprint requests to: B.P. Exploration, 4/5 Long Walk, Stockley Park, Uxbridge UB11 1BP, UK  相似文献   

4.
Petrological and geochemical data for basic (alkali basalts and hawaiites) and silicic peralkaline rocks, plus rare intermediate products (mugearites and benmoreites) from the Pleistocene Boseti volcanic complex (Main Ethiopian Rift, East Africa) are reported in this work. The basalts are slightly alkaline or transitional, have peaks at Ba and Nb in the mantle-normalized diagrams and relatively low 87Sr/86Sr (0.7039–0.7044). The silicic rocks (pantellerites and comendites) are rich in sanidine and anorthoclase, with mafic phases being represented by fayalite-rich olivine, opaque oxides, aenigmatite and slightly Na-rich ferroaugite (ferrohedenbergite). These rocks were generated after prolonged fractional crystallization process (up to 90–95 %) starting from basaltic parent magmas at shallow depths and fO2 conditions near the QFM buffer. The apparent Daly Gap between mafic and evolved Boseti rocks is explained with a model involving the silicic products filling upper crustal magma chambers and erupted preferentially with respect to basic and intermediate products. Evolved liquids could have been the only magmas which filled the uppermost magma reservoirs in the crust, thus giving time to evolve towards Rb-, Zr- and Nb-rich peralkaline rhyolites in broadly closed systems.  相似文献   

5.
The 14.1 Ma composite welded ignimbrite P1 (45 km3 DRE) on Gran Canaria is compositionally zoned from a felsic lower part to a basaltic top. It is composed of four component magmas mixed in vertically varying proportions: (1) Na-rhyolite (10 km3) zoned from crystal-poor to highly phyric; (2) a continuously zoned, evolved trachyte to sodic trachyandesite magma group (6 km3); (3) a minor fraction of Na-poor trachyandesite (<1 km3); and (4) nearly aphyric basalt (26 km3) zoned from 4.3 to 5.2 wt% MgO. We distinguish three sites and phases of mixing: (a) Mutual mineral inclusions show that mixing between trachytic and rhyolitic magmas occurred during early stages of their intratelluric crystallization, providing evidence for long-term residence in a common reservoir prior to eruption. This first phase of mixing was retarded by increasing viscosity of the rhyolite magma upon massive anorthoclase precipitation and accumulation. (b) All component magmas probably erupted through a ring-fissure from a common upper-crustal reservoir into which the basalt intruded during eruption. The second phase of mixing occurred during simultaneous withdrawal of magmas from the chamber and ascent through the conduit. The overall withdrawal and mixing pattern evolved in response to pre-eruptive chamber zonation and density and viscosity relationships among the magmas. Minor sectorial variations around the caldera reflect both varying configurations at the conduit entrance and unsteady discharge. (c) During each eruptive pulse, fragmentation and particulate transport in the vent and as pyroclastic flows caused additional mixing by reducing the length scale of heterogeneities. Based on considerations of magma density changes during crystallization, magma temperature constraints, and the pattern of withdrawal during eruption, we propose that eruption tapped the P1 magma chamber during a transient state of concentric zonation, which had resulted from destruction of a formerly layered zonation in order to maintain gravitational equilibrium. Our model of magma chamber zonation at the time of eruption envisages a basal high-density Na-poor trachyandesite layer that was overlain by a central mass of highly phyric rhyolite magma mantled by a sheath of vertically zoned trachyte-trachyandesite magma along the chamber walls. A conventional model of vertically stacked horizontal layers cannot account for the deduced density relationships nor for the withdrawal pattern.  相似文献   

6.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

7.
Deposits of the 22.6 ka Okareka Eruption Episode from Tarawera Volcanic Complex record the sequential and simultaneous eruption of three discrete rhyolite magmas following a silicic recharge event related to basaltic intrusion. The episode started with basaltic eruption ( 0.01 km3 magma), and rapidly changed to a plinian eruption involving a moderate temperature (750 °C), cummingtonite-bearing rhyolite magma (T1) with a volume of  0.3 km3. Hybrid basalt/rhyolite clasts demonstrate direct basaltic intrusion that helped trigger the eruption. Crystals, shards and lapilli of two other rhyolite magmas then joined the eruption sequence. They comprise a cooler (720 °C) crystal-rich biotite–hornblende rhyolite magma (T2) ( 0.3 km3), and a hotter (780 °C), crystal-poor, pyroxene–hornblende rhyolite magma (T3) ( 4.5 km3). All mid to late-stage ash units contain various mixtures of T1, T2 and T3 components with a general increase in abundance of T3 and rapid decline of T1 with time. About 4 km3 of T3 magma was extruded as lavas at the end of the episode. Contrasts in melt composition, crystal and volatile contents, and temperatures influenced viscosity and miscibility, and thus limited pre-eruption mixing of the rhyolite magmas. The eruption sequence and the restricted direct basaltic intrusion into only one magma (T1) is consistent with the rhyolites occupying separate melt pods within a large crystal-mush zone. Melt–crystal equilibria and volatile contents in melt inclusions indicate temporary magma storage depths of < 8 km. Each of the magmas display quartz crystals containing melt inclusions that are compositionally highly evolved relative to the accompanying matrix glass, and thus point to a stage of more complete crystallisation. The matrix glass, enriched in Sr and Ti, represents a re-melting event of underlying the crystal pile induced by basaltic intrusion, presumably part of the same event that erupted scoria at the start of the eruption. This recharge rhyolite melt percolated upward and hybridised with the resident melts in each of the three magma pods. The Okareka episode rhyolites contrast with other well-documented rhyolites that are either continuously or discontinuously zoned, or have been homogenised during re-activation to a uniform composition. Rapid basalt dike intrusion to shallow levels appears to have (prematurely?) triggered the Okareka rhyolites into eruption, so that their early ponding in separate melt pods has been recorded before it could be masked by mixing or stratification had amalgamation into a larger body occurred.  相似文献   

8.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

9.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

10.
Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust. Received: 26 March 1996 / Accepted: 14 November 1996  相似文献   

11.
Summary The Late Pleistocene Mt. Vulture strato-volcano developed at the intersection of NE-SW and NW-SE lithospheric fault systems, on the easternmost border of the Apennine compressional front overthrust onto the Apulian foreland. The initial phase of the volcanic activity is represented by pyroclastic deposits, including lava blocks, and subordinate eccentric domes, mostly phonolitic in composition. The later stages of activity formed the bulk of the strato-volcano (pyroclastic products and subordinate lavas), mostly tephritic in composition, with minor intercalations of basanite, mela-foidite and melilitite lavas and dikes. Variations in rock and mineral composition suggest that the volumetrically predominant basanite-tephrite (foidite)-phonotephrite-phonolite series can be accounted for by fractional crystallization processes starting from basanitic parental magmas, in agreement with the remarkably constant 87Sr/86Sr isotopes (0.70586–0.70581). Mass-balance calculations indicate that the variably differentiated magmas may have been produced by removal of wehrlite, clinopyroxenite and syenite cumulates, some of which are occasionally found as cognate xenoliths in the volcanics. Fractionation processes probably developed in multiple-zoned magma chambers, at depths of 3–5 km, corresponding to the tectonic discontinuity between the allochthonous Apennine formations and the underlying Apulian platform. Highly differentiated phonolitic magmas capping the magma chambers and their conduits thus appear to have fed the initial volcanic activity, whereas dominantly tephritic products were erupted in later stages. The least evolved mafic magmas, namely basanites, mela-foidites and melilitites, are characterized by diverse Na/K ratios and critical SiO2-undersaturation, which indicate their derivation as independent melts generated from distinct, heterogeneously enriched mantle sources and by variable partial melting degrees. Primitive mantle-normalized incompatible element patterns of Vulture mafic lavas invariably share analogies with both orogenic subduction-related magmas (high Low Field Strength Elements/High Field Strength Elements ratios, K, Rb and Th contents and marked Ti and Nb negative anomalies) and alkaline lavas from within-plate and rift settings (high Light Rare Earth Elements, P, Zr, Nb and Na). These geochemical features may be accounted for by magma generation from deep lithospheric mantle sources, enriched in Na-alkali silicate/carbonatite anorogenic components, subsequently affected by orogenic subduction-related K-metasomatism, analogous to that which modified magma sources of the Roman Magmatic Province along the internal Apennine Chain. Received April 12, 2000; revised version accepted June 7, 2001  相似文献   

12.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

13.
Petrogenesis of the Zoned Laacher See Tephra   总被引:2,自引:2,他引:2  
The late Quaternary Laacher See phonolitic tephra deposit (EastEifel, W. Germany) is mineral-ogically and chemically zonedfrom highly evolved, volatile-rich and crystal-poor at its basetowards a mafic, crystal-rich phonolite at the top (Wörner& Schmincke, 1984). This zonation is interpreted as theresult of a continuous eruption from a zoned magma column. Majorand trace element evidence shows that the last erupted maficULST (Upper Laacher See Tephra) phonolite can be derived froma basanite parent magma via fractional crystallization of 30per cent clinopyroxene, 24 per cent amphibole, 4 per cent phlogopite,3.8 per cent magnetite, 2.5–3.0 per cent olivine and 1per cent apatite, leaving a derivative of 30 per cent evolvedmagma. Starting from the mafic (ULST) phonolite as a parent, the zonedsequence is postulated to have been formed by progressive fractionalcrystallization of the observed phenocryst phases. This modelwas tested by a series of 7 step-by-step mass balance fractionationcalculations. Abundance, modal composition and relative variationsof calculated fractionated phases agree well with the observedphenocryst abundances: sanidine followed by plagioclase andminor amounts of mafic phases are to be fractionated to givethe observed zoned sequence. The most evolved phonolite, however, cannot be generated bysubtraction of phenocrysts from the underlying phonolite. Processessuch as liquid-state differentiation may therefore have chemicallymodified the upper part (cupola) of the Laacher See magma columnsubsequent to crystal fractionation. The erupted phonolite magma (5.3 km3) was calculated to havestarted with a volume of 56 km3 of parental basanite magma whichfractionated to form 16.6 km3 of mafic phonolite. This magmafurther differentiated to give a 5.3 km3 zoned (erupted) phonolitecolumn. The non-erupted volume of 50 km3 is postulated to forma cooling cumulate body below the present day Laacher See volcano. The Laacher See magma system represents a complex end-membertype of a highly evolved small volume composition ally zonedmagma chamber with steep major and trace element gradients,the uppermost volatile rich magma layer resembling the stableroof part of rhyolitic chambers.  相似文献   

14.
More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199°C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.  相似文献   

15.
Roof-to-floor exposures of mid-Miocene plutons in tilt blocks south of Las Vegas, NV, reveal distinct but strongly contrasting magma chamber statigraphy. The Searchlight and Aztec Wash plutons are well-exposed, stratified intrusions that show a similar broad range in composition from 45–75 wt.% SiO2. Homogeneous granites that comprise about one-third of each intrusion are virtually identical in texture and elemental and isotopic chemistry. Mafic rocks that are present in both plutons document basaltic input into felsic magma chambers. Isotopic compositions suggest that mafic magmas were derived from enriched lithospheric mantle with minor crustal contamination, whereas more felsic rocks are hybrids that are either juvenile basaltic magma+crustal melt mixtures or products of anatexis of ancient crust+young (Mesozoic or Miocene?) mafic intraplate.

Despite general similarities, the two plutons differ markedly in dimensions and lithologic stratigraphy. The Searchlight pluton is much thicker (10 vs. 3 km) and has thick quartz monzonite zones at its roof and floor that are absent in the Aztec Wash pluton. Isotopic and elemental data from Searchlight pluton suggest that the upper and lower zones are cogenetic with the granite; we interpret the finer grained, slightly more felsic upper zone to represent a downward migrating solidification front and the lower zone to be cumulate. In contrast, the upper part of the Aztec Wash pluton is granite, and a heterogeneous, mafic-rich injection zone with distinct isotopic chemistry forms the lower two-thirds of the intrusion. Similar mafic rocks are relatively sparse in Searchlight pluton and do not appear to have played a central role in construction of the pluton. Large felsic and composite dikes that attest to repeated recharging and intrachamber magma transfer are common in the Aztec Wash pluton but absent in the Searchlight pluton. Thus, although both intrusions were filled by similar magmas and both developed internal stratification, the two intrusions evolved very differently. The distinctions may be attributable to scale and resulting longevity and/or to subtle differences in tectonic setting.  相似文献   


16.
新疆东部葫芦岩体地表出露面积0.75km2,是由辉长闪长岩、辉长岩、辉石岩、辉橄岩、橄榄岩组成的复式岩体。LA-ICP-MS锆石U-Pb定年,岩体形成年龄为274.5±3.9Ma,是东天山后碰撞伸展环境的产物。岩石和矿石的PGE总量低,其中IPGE与PPGE含量相近,PPGE略高于IPGE。岩石平均7.90×10-9,矿石平均45.57×10-9。在原始地幔标准化图解上,岩石和矿石具有相似的分配模式,PPGE和IPGE之间分异较弱。Ni/Cu-Pd/Ir关系图显示母岩浆主要为高镁的玄武质岩浆。根据矿石Cu/Pd比值114.67×103~157.42×103(平均136.05×103)和岩石Cu/Pd比值11.07×103~294.35×103(平均125.48×103)推断,葫芦矿床成矿母岩浆演化过程中经历了深部硫化物部分熔离的过程,这可能是导致该矿床PGE明显亏损的原因之一。地壳物质的混染(SiO2、S等的加入)以及橄榄石、辉石等矿物的分离结晶,是引起该矿床硫饱和并发生硫化物熔离作用而成矿的主要因素。  相似文献   

17.
238U–230Th disequilibria and Sr and O isotope ratios have been measured in a suite of samples from most of the known prehistoric and historic eruptions of Hekla volcano, Iceland. They cover the compositional range from basaltic andesite to rhyolite. Recent basalts erupted in the vicinity of the volcano and a few Pleistocene basalts have also been studied. Geochemical data indicate that the best tracers of magmatic processes in Hekla are the (230Th/232Th) and Th/U ratios. Whereas most geochemical parameters, including Sr, Nd and O isotopes, could be compatible with crystal fractionation, (230Th/232Th) and Th/U ratios differ in the basalts and basaltic andesites (1.05 and 3.2, respectively) and in the silicic rocks, dacites and rhyolites (0.98 and 3.4–3.7, respectively). This observation precludes fractional crystallization as the main differentiation process in Hekla. On the basis of these results, the following model is proposed: basaltic magmas rise in the Icelandic crust and cause partial melting of metabasic rocks, leading to the formation of a dacitic melt. The basaltic magma itself evolves by crystal fractionation and produces a basaltic andesite magma. The latter can mix with the dacitic liquid to form andesites. At higher levels in the magma chamber, the dacitic melt sometimes undergoes further differentiation by crystal fractionation and produces subordinate volumes of rhyolites. Together all these processes lead to a zoned magma chamber. However, complete zoning is achieved only when the repose time between eruptions is long enough to allow the production of significant volumes of dacitic magma by crustal melting. This situation corresponds to the large plinian eruptions. Between these eruptions, the so-called intra-cyclic activity is characterized by the eruption of andesites and basaltic andesites, with little crustal melting. The magmatic system beneath Hekla most probably was established during the Holocene. The shape and the size of the magma chamber may be inferred from the relationships between the composition of the lavas and the location of the eruption sites. In a cross-section perpendicular to Hekla's ridge, a bell-shaped reservoir 5 km wide and 7 km deep appears the most likely; its top could be at depth of 8 km according to geophysical data.  相似文献   

18.
Crystal-poor, differentiated magmas are commonly erupted from shallow, thermally zoned magma chambers. In order to constrain the origin of these magmas, we have experimentally investigated crystallization, differentiation and crystal-melt separation in presence of a thermal gradient. Experiments have been designed taking advantage of the innate temperature gradient of the piston cylinder apparatus and carried out on a phonolitic system at 0.3 GPa and temperature ranging from 1,050 to 800°C. Crystallization degree and melt composition in experimental products vary as a function of the temperature gradient. In particular, melt composition differentiates from tephri-phonolite (starting material) to phonolite moving from the hotter, glassy zone (T ≤ 1,050°C) towards the cooler, heterogeneously crystallized zone (T ≤ 900°C) of the charge. The heterogeneously crystallized zone is made up of: (1) a crystal-rich, mushy region (crystallinity >30 vol%), (2) a rigid crystal framework (crystallinity ≤80 vol%) and (3) glassy belts of phonolitic glass at the top. Thermal gradient experiments picture crystallization, differentiation and crystal-melt separation processes occurring in a thermally zoned environment and reveal that relatively large volumes of crystal-poor melt (glassy belts) can originate as a consequence of the instability and collapse of the rigid crystal framework. Analogously, in thermally zoned magma chambers, the development and collapse of a solidification front may represent the controlling mechanism originating large volumes of crystal-poor, differentiated magmas.  相似文献   

19.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

20.
Changbaishan, an intraplate volcano, is characterized by an approximately 6 km wide summit caldera and last erupted in 1903. Changbaishan experienced a period of unrest between 2002 and 2006. The activity developed in three main stages, including shield volcano(basalts), cone-construction(trachyandesites to trachytes with minor basalts), and caldera-forming stages(trachytes to comendites). This last stage is associated with one of the more energetic eruptions of the last millennium on Earth, the 946 CE, VEI 7 Millennium Eruption(ME),which emitted over 100 km3 of pyroclastics. Compared to other active calderas, the plumbing system of Changbaishan and its evolution mechanisms remain poorly constrained. Here, we merge new whole-rock,glass, mineral, isotopic, and geobarometry data with geophysical data and present a model of the plumbing system. The results show that the volcano is characterized by at least three main magma reservoirs at different depths: a basaltic reservoir at the Moho/lower crust depth, an intermediate reservoir at 10–15 km depth, and a shallower reservoir at 0.5–3 km depth. The shallower reservoir was involved in the ME eruption, which was triggered by a fresh trachytic melt entering a shallower reservoir where a comenditic magma was stored. The trachytes and comendites originate from fractional crystallization processes and minor assimilation of upper crust material, while the less evolved melts assimilate lower crust material. Syn-eruptive magma mingling occurred during the ME eruption phase. The magma reservoirs of the caldera-forming stage partly reactivate those of the cone-construction stage. The depth of the magma storage zones is controlled by the layering of the crust.The plumbing system of Changbaishan is vertically extensive, with crystal mush reservoirs renewed by the replenishment of new trachytic to trachyandesitic magma from depth. Unlike other volcanoes, evidence of a basaltic recharge is lacking. The interpretation of the signals preceding possible future eruptions should consider the multi-level nature of the Changbaishan plumbing system. A new arrival of magma may destabilize a part of or the entire system, thus triggering eruptions of different sizes and styles. The reference model proposed here for Changbaishan represents a prerequisite to properly understand periods of unrest to potentially anticipate future volcanic eruptions and to identify the mechanisms controlling the evolution of the crust below volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号