首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 ± 6 Ma and 166 ± 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nevertheless, an age of 156 ± 6 Ma is derived from the 238U-206Pb isotopic system from the purest mineral fractions (maskelynite and pyroxene). The concordance of these three ages suggest that the 238U-206Pb systematics of the purest Zagami mineral fractions have been minimally disturbed by alteration and impact processes, and can therefore be used to constrain the behavior of U and Pb in the Zagami source region. The μ value of the Zagami source region can be estimated, with some confidence from the 238U-206Pb isochron, to be 3.96 ± 0.02. Disturbance of the U-Pb isotopic systems means that this represents a minimum value. The μ value of the Zagami source is significantly lower than the μ values estimated for most basaltic magma sources from Earth and the Moon. This is surprising given the high initial 87Sr/86Sr ratio (0.721566 ± 82) and low initial εNd value (−7.23 ± 0.17) determined for Zagami that indicate that this sample is derived from one of the most highly fractionated reservoirs from any known planetary body. This suggests that Mars is characterized by a low bulk planet U/Pb ratio, a feature that is consistent with its relatively volatile-rich nature.The leachates contain terrestrial common Pb that was probably added to the meteorite during handling, curation, or sawing. The mineral fractions, particularly those with significant amounts of impact melt glass, contain a second contaminant. The presence of this contaminant results in Pb-Pb ages that are older than the crystallization age of Zagami, indicating that the contaminant is characterized by a high 207Pb/206Pb ratio. Such a contaminant could be produced by removal of single-stage Pb from a relatively high μ martian reservoir before ∼1.8 Ga, and therefore could be an ancient manifestation of hydrous alteration of martian surface material.  相似文献   

7.
8.
Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U-Pb (SHRIMP II), Ar-Ar, and Sm-Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S-type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0-2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM-2st) = 2200 Ma and 8Nd(T) = − 6.0) and the presence of ancient zircon cores (1.80-1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U-Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K-Ar biotite age, 615.5 ± 6.3 Ma.  相似文献   

9.
The U-Pb geochronological study of zircons from alkali granitoids of the Elenovsk Complex constituting the Zhilanda and Lesnoi massifs (northern Kazakhstan) located several kilometers away from each other revealed their close ages: 433 ± 2, 440 ± 10, and 426 ± 12 Ma.  相似文献   

10.
11.
12.
13.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

14.
麦卡因大型VMS型Au-Ag-Cu-Zn-Pb矿床位于中哈萨克斯坦西北部的Baidaulet-Akbastau地区。地质剖面测量和岩石薄片研究表明,麦卡因矿区发育中基性火山岩(玄武岩和安山岩)和次火山岩(辉绿-辉长岩和辉绿岩),矿化主要与安山岩有关。对矿区火山岩地球化学分析表明,矿区岩石分为两种类型:类型Ⅰ为拉斑-钙碱性系列中基性火山岩(玄武岩和安山岩)和次火山岩(辉绿-辉长岩和辉绿岩),岩石具平坦的稀土配分模式,亏损Nb和富集Th/Yb,显示俯冲特点;类型Ⅱ为钙碱性系列安山岩,具典型的右倾型稀土配分模式,亏损Nb和富集Th/Yb,指示其形成于岛弧环境。含矿岩石为类型Ⅱ安山岩。对类型Ⅱ安山岩进行了锆石Lu-Hf同位素和SIMS U-Pb年龄分析,结果表明,锆石εHf(t)为较高的正值(+4.28~+14.84),指示其是地幔物质部分熔融的产物,锆石SIMS U-Pb年龄为459.1±4.8Ma,指示其成岩年龄属于晚奥陶世。因此,哈萨克斯坦麦卡因大型VMS型矿床含矿火山岩为钙碱性系列安山岩,形成于晚奥陶世岛弧环境。对比研究认为,哈萨克斯坦早古生代波谢库尔-成吉思斑岩型-VMS型成矿带向东延伸到我国西准噶尔沙尔布提山,沙尔布提山具有形成VMS型矿床的岩浆条件和构造环境。  相似文献   

15.
16.
金沙江构造带嘎金雪山岩群玄武岩铀-铅同位素年龄   总被引:1,自引:0,他引:1  
以U Pb单颗粒锆石同位素稀释法 ,测定了嘎金雪山岩群中两件玄武岩样品的同位素年龄。获得的两个下交点年龄分别为 (36 2± 8)Ma和 (396± 7)Ma ,两个上交点年龄分别为 (2 52 5± 12 )Ma和 (1387± 59)Ma。前者代表嘎金雪山岩群玄武岩的生成年龄 ,说明金沙江洋在早石炭世就已打开 ;后者代表下伏基底年龄 ,表明金沙江构造带深部可能存在具扬子古陆壳性质的中—早元古宙地层 ,从而表明金沙江洋是由扬子古陆边缘裂解而成的。  相似文献   

17.
18.
19.
满洲里南部中生代花岗岩的锆石U--Pb年龄及Hf同位素特征   总被引:4,自引:0,他引:4  
满洲里南部地区花岗岩主要由碱长花岗岩、正长花岗岩、二长花岗岩及花岗斑岩组成。采用LA--ICP--MS技术,对满洲里南部花岗岩进行的锆石U--Pb年龄测定表明,该区中生代花岗岩浆活动分为3期:中—晚三叠世(208~239 Ma)、早侏罗世(179~185 Ma)和晚侏罗世—早白垩世(137~151 Ma),与整个大兴安岭中生代花岗岩的年代学格架基本一致,与东部的张广才岭—小兴安岭地区中生代岩浆活动时代也可以对比。锆石LA--MC--ICP--MS Hf同位素研究显示,本区中生代花岗岩的锆石εHf(t)多数为+0.7~+9.5,二阶段模式年龄为0.6~1.2 Ga,表明花岗岩浆主要源于中—新元古代增生的地壳物质。结合额尔古纳地块其他花岗岩的锆石Hf同位素资料,认为额尔古纳地块在中—新元古代时期曾发生一次重要的地壳增生事件,与兴安地块的地壳增生时间为新元古代—显生宙的特点不同。  相似文献   

20.
泥盆纪地层广泛分布于南秦岭地区,为揭示南秦岭地质演化过程提供了重要的信息。目前,对于南秦岭泥盆纪沉积物源、构造环境存在争议,相关泥盆纪物质源区地壳生长仍旧缺乏深入讨论。本文通过对采自南秦岭佛坪地区泥盆纪砂岩碎屑锆石U-Pb 年代学研究揭示,样品中锆石年龄主要分布于500~400 Ma 和1 300~700 Ma,少量为~1.85 Ga、~2.5 Ga和~2.7 Ga。这些碎屑锆石U-Pb 年龄和相应Hf同位素数据表明,该时期碎屑物质主要来自于南、北秦岭和华北板块南缘,缺少来自扬子板块北缘的物源供给。综合已发表的刘岭群碎屑锆石Hf同位素数据,我们识别出南秦岭泥盆纪物质源区存在3 期地壳生长事件,并且分别对应于北秦岭早古生代(500~407 Ma)弧岩浆岩事件、华北板块南缘新太古末期-古元古代早期(~2.5 Ga)和新太古代中期(~2.7 Ga)的岩浆事件。结合累积曲线分布特征和前人研究成果,我们认为刘岭群该时期为前陆盆地沉积环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号