首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
综述云南天文台“四波段(1420 、2000 、2840 和4000 MHz) 太阳射电高时间分辨率同步观测系统”在1989 年12 月—1994 年1 月期间所观测到的12 个射电脉动事件,发现在这些波段有多种不同特征的脉动现象,并在此基础上对脉动的形态、周期、带宽等观测特征作了分析和讨论  相似文献   

2.
Using the decimetric (700–1500 MHz) radio spectrometer and the synchronous observational system with high temporal resolution at four frequencies (1420, 2130, 2840 and 4260 MHz) of Yunnan Observatory, two rare events were observed on 2001 June 24 and 1990 July 30. The former was a small radio burst exhibiting pulsations with short periods (about 29, 40 and 100 ms) in the impulsive phase. The latter was a large radio burst, which at 2840 MHz produced radio pulsations with period of about 30 ms. This paper focuses on pulsations with very short periods in the range of 29–40 ms. The mechanism of generation of such pulsations may be modulation of radio radiation by the periodic trains of whistler packets originating in unstable regions of the corona. Alternatively, these pulsations can be attributed to wave-wave non-linear interactions of electrostatic upper hybrid waves driven by beams of precipitating electrons in flaring loops.  相似文献   

3.
Wang  M.  Xie  R. X. 《Solar physics》1997,176(1):171-179
Long-periodic pulsations with a period of tens of seconds associated with a Type IV solar radio emission are found at 1420 and 2000 MHz. Some features (such as the bandwidth, periodicity, frequency drift, amplitude, and relative amplitude) of the pulsations are introduced and discussed in this paper.  相似文献   

4.
利用国家天文台云南天文台“分米波(700—1500MHz)射电频谱仪”和“四波段太阳射电高时间分辨率同步观测系统”分别于2001年6月24日和1990年7月30日观测到了两个稀少事件,前者是一个小射电爆发,其上升相伴随有短周期(约29、40和100毫秒)的脉动,后者是一个射电大爆发,在2840MHz上产生了周期约30毫秒的射电脉动,还着重讨论其甚短周期(如29—40毫秒)的脉动现象,甚短周期脉动可能是归因于起源在日冕深处不稳定区域的哨声波束周期链对射电辐射的调制,或沉降电子束驱动的静电高混杂波,经由波-波非线性相互作用导致甚短周期的射电脉动。  相似文献   

5.
Lezniak  J. A.  Webber  W. R. 《Solar physics》1974,37(2):477-482
Quasi-periodic solar emission has been observed with a radio spectrograph operating at 18–28 MHz during weak decametric continuum on August 22, 1972. The continuum activity was observed simultaneously on fixed frequency receivers at 18 MHz and at 26 MHz. The pulsations showed a mean period of 4 s and a sharp low-frequency cut-off at 24 MHz. Spectral characteristics of these and similar pulsations observed by other workers are examined and shown to be consistent with an interpretation based on an oscillating magnetic flux tube in the solar corona.  相似文献   

6.
在1990年7月30日观测到的太阳射电大爆发中,在1420MHz和2000MHz两个波段上发现了长周期(数+秒)的脉冲现象。经数据处理分析,发现了几个特点:(1)脉冲的宽带大于600MHz。(2)1420MHz上的脉动的周期较2000MHz上脉动的周期大,相对强度也是前者较大。(3)脉冲的相对强度随脉冲周期的增大而增大,呈较好的线性关系  相似文献   

7.
P. Zlobec  M. Karlický 《Solar physics》2014,289(5):1683-1699
To obtain constraints for models of fiber bursts, high-resolution time (0.01 s) profiles of the fiber bursts recorded at 1420 and 2695 MHz by the Trieste radiometers are studied in detail. The fiber bursts were identified using Ond?ejov radio spectra. During the years 2000?–?2005, 18 intervals with fiber bursts were selected; 26 groups were defined and about 700 fibers were analyzed in detail. More than 300 pulsations, present almost simultaneously with the fibers, were also selected and studied in order to find similarities or differences between these two types of fine structures. It was found that the polarization of the associated continuum, both for fiber bursts and pulsations, is practically the same. Evaluating the ratio between absorption over emission of many single fibers we found that this parameter is very different even for nearby bursts; however, we realized that this ratio shows a tendency to decrease with time. Finally, the time profile of one selected fiber burst was fitted using a recent model based on the modulation of the broadband radio emission by fast magnetoacoustic waves. The results are discussed.  相似文献   

8.
In this paper we estimated the temperatures and brightnesses of the Monoceros radio loop at 1420, 820 and 408 MHz. The linear spectrum is estimated for mean temperatures versus frequency between 1420, 820 and 408 MHz. The spectral index of Monoceros loop is also obtained. The brightness temperatures and surface brightnesses of the loop are computed using data taken from radio‐continuum surveys at the three frequencies. The spectral index of the loop is also obtained from T‐T plots between 1420–820, 1420–408, and 820–408 MHz. The obtained results confirm non‐thermal origin of the Monoceros radio loop (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Subramanian  K.R.  Ebenezer  E. 《Solar physics》2003,218(1-2):221-226
Solar Physics - Quasi-periodic pulsations with periods mostly around 13&;nbsp;s in the frequency range of 54–78&;nbsp;MHz have been observed following the first X2&;nbsp;flare...  相似文献   

10.
Pulsating structures recorded at 237 MHz that are associated to decimetric continuum enhancement during the September 9, 2001 solar radio burst are described. We analyzed the radiopolarimetric data recorded at the Trieste Solar Radio System (INAF—Trieste Astronomical Observatory—Basovizza Observing Station) with very high time resolution (1 ms) at metric frequencies. Two different types of pulsations that occur in about 4 minutes at the same frequency are described. The possible mechanisms are analyzed and some parameters of the associated magnetic structure are estimated.  相似文献   

11.
This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30?–?240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.  相似文献   

12.
The classical nova V4743 Sgr was observed with XMM–Newton for about 10 h on 2003 April 4, 6.5 months after optical maximum. At this time, this nova had become the brightest supersoft X-ray source ever observed. In this paper, we present the results of a time-series analysis performed on the X-ray light curve (LC) obtained in this observation, and in a previous shorter observation done with Chandra 16 d earlier. Intense variability, with amplitude as large as 40 per cent of the total flux, was observed both times. Similarities can be found between the two observations in the structure of the variations. Most of the variability is well represented as a combination of oscillations at a set of discrete frequencies lower than 1.7 mHz. At least five frequencies are constant over the 16 d time interval between the two observations. We suggest that a period in the power spectrum of both LCs at the frequency of 0.75 mHz and its first harmonic are related to the spin period of the white dwarf (WD) in the system, and that other observed frequencies are signatures of non-radial WD pulsations. A possible signal with a 24 000 s period is also found in the XMM–Newton LC: a cycle and a half are clearly identified. This period is consistent with the 24 278 s periodicity discovered in the optical LC of the source and thought to be the orbital period of the nova binary stellar system.  相似文献   

13.
The properties of powerful (flux >10−19 W m−2 Hz−1) type III bursts observed in July – August 2002 by the radio telescope UTR-2 at frequencies 10 – 30 MHz are analyzed. Most bursts have been registered when the active regions associated to these bursts were located near the central meridian or at 40° – 60° to the East or West from it. All powerful type III bursts drift from high to low frequencies with frequency drift rates 1 – 2.5 MHz s−1. It is important to emphasize that according to our observations the drift rate is linearly increasing with frequency. The duration of the bursts changes mainly from 6 s at frequency 30 MHz up to 12 s at 10 MHz. The instantaneous frequency bandwidth does not depend on the day of observations, i.e. on the disk location of the source active region, and is increasing with frequency.  相似文献   

14.
Solar S-bursts observed by the radio telescope UTR-2 in the period 2001 – 2002 are studied. The bursts chosen for a detailed analysis occurred in the periods 23 – 26 May 2001, 13 – 16 and 27 – 39 July 2002 during three solar radio storms. More than 800 S-bursts were registered in these days. Properties of S-bursts are studied in the frequency band 10 – 30 MHz. All bursts were always observed against a background of other solar radio activity such as type III and IIIb bursts, type III-like bursts, drift pairs and spikes. Moreover, S-bursts were observed during days when the active region was situated near the central meridian. Characteristic durations of S-bursts were about 0.35 and 0.4 – 0.6 s for the May and July storms, respectively. For the first time, we found that the instantaneous frequency width of S-bursts increased with frequency linearly. The dependence of drift rates on frequency followed the McConnell dependence derived for higher frequencies. We propose a model of S-bursts based on the assumption that these bursts are generated due to the confluence of Langmuir waves with fast magnetosonic waves, whose phase and group velocities are equal.  相似文献   

15.
In this paper, the average brightness temperatures and surface brightnesses at 1420, 820 and 408 MHz of the six main Galactic radio-continuum loops are derived, as are their radio spectral indices. The temperatures and surface brightnesses of the radio loops are computed using data taken from radio-continuum surveys at 1420, 820 and 408 MHz. We have demonstrated the reality of Loops V and VI and present diagrams of their spectra for the first time. We derived the radio spectral indices of Galactic radio loops from radio surveys at three frequencies (1420, 820 and 408 MHz) and confirm them to be non-thermal sources. Diameters and distances of Loops I–VI were also calculated. The results obtained are in good agreement with current theories of supernova remnant (SNR) evolution and suggest that radio loops may have a SNR origin.  相似文献   

16.
We report on the detailed analysis of i) differences between the properties of type IIs with various starting frequencies (high: ≥100 MHz; low: ≤50 MHz; mid: 50 MHz ≤f≤ 100 MHz) and ii) the properties of CMEs and flares associated with them. For this study, we considered a sample of type II radio bursts observed by Culgoora radio spectrograph from January 1998 to December 2000. The X-ray flares and CMEs associated with these events are identified using GOES and SOHO/LASCO data. The secondary aim is to study the frequency dependence on other properties of type IIs, flares, and CMEs. We found that the type IIs with high starting frequencies have larger drift rate, relative drift rate, and shock speed than the type IIs with low starting frequencies. The flares associated with high frequency type IIs are of impulsive in nature with shorter rise time, duration and delay between the flare start and type II start times than the low frequency type IIs. There is a distinct power – law relationship between the flare parameters and the starting frequencies of type II bursts, whereas the trend in the CME parameters shows low correlation. While the mean speed of CMEs is larger for the mid-frequency group, it is nearly the same for the high and low frequency groups. On the other hand, the percentage of CME association (90%) is larger for low frequency type IIs than for the high frequency type IIs (75%).  相似文献   

17.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

18.
An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16?–?28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz?s?1) at frequencies higher than 22 MHz and negative (100 kHz?s?1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300?–?400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.  相似文献   

19.
A sample of 10 decimetric broadband pulsations were observed in 1980–1983 and analyzed in polarization. Half of the data set was 85–100% circularly polarized, the other half showed a mild polarization of 15–55%. The polarization is constant in time and frequency for the strongly polarized group. All the mildly polarized bursts originate from near the limb; the lower degree of circular polarization is likely to be caused by depolarization due to propagation effects. The degree of polarization is constant throughout the event, but varies in frequency for the mild polarized group. Following the leading spot hypothesis, the magneto-ionic mode of the emission was found to be extraordinary. The high circular polarization of the pulsations was interpreted to be determined by the emission mechanism itself, not by propagation effects or cut-offs (contrary to the metric type I noise storms). Implications for pulsation models are discussed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

20.
Imke de Pater  David E Dunn 《Icarus》2003,163(2):449-455
We observed Jupiter’s synchrotron radiation at frequencies of 15 and 22 GHz using the VLA (Very Large Array) in its most compact configuration (D-array) in March 1991. The spatial brightness distribution of the emission at these high frequencies appears to be very similar to that seen at lower frequencies (5 GHz down to 330 MHz). We measured a total nonthermal flux density at 15 and 22 GHz of 1.5 ± 0.15 Jy and 1.5 ± 0.4 Jy, respectively (both normalized to a geocentric distance of 4.04 AU). These numbers agree well with model spectra of Jupiter’s synchrotron radiation that were obtained by fitting the planet’s nonthermal radio emission between 74 MHz and 8 GHz and suggest a maximum cutoff in electron energies at ∼100 MeV. The degree of linear polarization observed with the VLA is 21.5 ± 1.9% at 15 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号