首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possibilities of improving the semiempirical model of cosmic ray (CR) modulation, proposed by us previously, are discussed. The following characteristics have been considered as model parameters in order to describe long-period CR variations using a unified model and to more completely reflect solar cycles in CR modulation as a complex interaction between two systems of fields (large-scale and local): the value and sign of the polar solar field, the average strength of the solar magnetic field (the B ss integral index), partial indices (zone-even (ZE) and zone-odd (ZO) and sector-even (SE) and sector-odd (SO) indices), the tilt of the heliospheric current sheet, and the special index (F x ) taking into account X ray flares. The role of each index in CR modulation has been revealed. When we described the long-term CR variations using many parameters and taking into account the integral index or one of four partial indices, the best results of modulation modeling during 1976–1999 were obtained for the B ss total energetic index and SO index. A difference between the model calculations and observations increases beginning from the middle of 2000; the problem features of the CR behavior and the specific features of modeling this behavior in cycle 23 of solar activity (SA) are discussed. It is assumed that a decrease in the CR density at the last SA minimums (from cycle to cycle) can be related to a decrease in the ZO index and to a recently detected similar decrease in the vertical component of the solar dipole magnetic moment.  相似文献   

2.
Recent analysis of monthly mean cloud data from the International Satellite Cloud Climatology Project uncovered a strong correlation between low cloud and the cosmic ray flux for extensive regions of the Earth. Additional data have been recently released covering the period up to September 2001 with which we have made a new study of the geographical variation of the correlation between low cloud and predicted ionization level from cosmic rays at an altitude of 2 km. When analysed globally, we find that the correlations do not correspond to the latitude variation of cosmic ray flux and they are not field significant. Nonetheless they appear to be marginally field significant over broad latitude and longitude bands with a peak positive correlation at 50 degrees North and South and a tendency to negative correlation at lower latitudes. The correlation is strongest over the North and South Atlantic. Several of these features are consistent with the predictions of the electroscavenging process.We use a simple model to calculate the climatic impact should the correlation be confirmed. We show that, under the most favorable conditions, a reduction in low cloud cover since the late 19th century, combined with the direct forcing by solar irradiance can explain a significant part of the global warming over the past century, but not all. However, this computation assumes that there is no feedback or changes in cloud at other levels.  相似文献   

3.
We have used the thermodynamic model of the climate to estimate the effect of variations in the oceanic cloud cover on the surface temperature of the Earth in the North Hemisphere (NH) during the period 1984–1990. We assume that the variations in the cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the temperature is slightly noticeable when we consider the surface hemispheric temperature on July 1987, finding an average temperature anomaly between −0.06°C and −0.14°C, along a latitudinal band between 20° and 40°. The surface temperature averaged globally in the NH presents a decrease of 0.01°C in average, which is almost the same for continents and oceans. However, these values are not significant when compared to the overall variability of the time series with and without forcing.  相似文献   

4.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

5.
The linkage between multi-decadal climate variability and activity of the sun has been long debated based upon observational evidence from a large number of instrumental and proxy records. It is difficult to evaluate the exact role of each of solar parameters on climate change since instrumentally measured solar related parameters such as Total Solar irradiance (TSI), Ultra Violet (UV), solar wind and Galactic Cosmic Rays (GCRs) fluxes are more or less synchronized and only extend back for several decades. Here we report tree-ring carbon-14 based record of 11-year/22-year solar cycles during the Maunder Minimum (17th century) and the early Medieval Maximum Period (9–10th century) to reconstruct the state of the sun and the flux of incoming GCRs. The result strongly indicates that the influence of solar cycles on climate is persistent beyond the period after instrumental observations were initiated. We find that the actual lengths of solar cycles vary depending on the status of long-term solar activity, and that periodicity of the surface air temperatures are also changing synchronously. Temperature variations over the 22-year cycles seem, in general, to be more significant than those associated with the 11-year cycles and in particular around the grand solar minima such as the Maunder Minimum (1645–1715 AD). The polarity dependence of cooling events found in this study suggests that the GCRs can not be excluded from the possible drivers of decadal to multi-decadal climate change.  相似文献   

6.
An assessment is made of the relative contribution of certain classes of energetic particle precipitation to the chemical composition of the middle atmosphere with emphasis placed on the production of odd nitrogen and odd hydrogen species and their subsequent role in the catalytic removal of ozone. Galactic cosmic radiation is an important source of odd nitrogen in the lower stratosphere but since the peak energy deposition occurs below the region where catalytic removal of O3 is most effective, it is questionable whether this mechanism is important in the overall terrestrial ozone budget. The precipitation of energetic solar protons can periodically produce dramatic enhancement in upper stratospheric NO. The long residence time of NO in this region of the atmosphere, where catalytic interaction with O3 is also most effective, mandates that this mechanism be included in future modelling of the global distribution of O3. Throughout the mesosphere the precipitation of energetic electrons from the outer radiation belt (60°70°) can sporadically act as a major local source of odd hydrogen and odd nitrogen leading to observable O3 depletion. Future satellite studies should be directed at simultaneously measuring the precipitation flux and the concomitant atmosphere modification, and these results should be employed to develop more sophisticated models of this important coupling.  相似文献   

7.
Using modern wavelet analysis techniques, we have made an attempt to search for oscillations of intensity of galactic cosmic rays (GCR), sunspot numbers (SS) and magnitudes of coronal index (CI) implying that the time evolution of those oscillations may serve as a precursor of Ground Level Enhancements (GLEs) of solar cosmic rays (SCR). From total number of 70 GLEs registered in 1942–2006, the four large events — 23 February 1956, 14 July 2000, 28 October 2003, and 20 January 2005 — have been chosen for our study. By the results of our analysis, it was shown that a frequency of oscillations of GCR decreases as time approaches to the event day. We have also studied a behaviour of common periodicities of GCR and SCR within the time interval of individual GLE. The oscillations of GLE occurrence rate (OR) at different stages of the solar activity (SA) cycle is of special interest. We have found some common periodicities of SS and CI in the range of short (2.8, 5.2, 27 and 60 days), medium (0.3, 0.5, 0.7, 1.3, 1.8 and 3.2 years) and long (4.6 and 11.0 years) periods. Short and medium periodicities, in general, are rather concentrated around the maxima of solar cycles and display the complex phase relations. When comparing these results with the behaviour of OR oscillations we found that the period of 11 years is dominating (controlling); it is continuous over the entire time interval of 1942–2006, and during all this time it displays high synchronization and clear linear ratios between the phases of oscillations of η, SS and CI. It implies that SCR generation is not isolated stochastic phenomena characteristic exclusively for chromospheric and/or coronal structures. In fact, this process may have global features and involve large regions in the Sun’s atmosphere.  相似文献   

8.

能量低于30 GeV的银河宇宙线正电子进入日球层时会与太阳风以及冻结在其中的日球层磁场发生相互作用, 太阳风对流、扩散、漂移的综合调制效应会导致银河宇宙线正电子通量出现各向异性. 本研究利用帕克(Parker)传输方程描述正电子在日球层中的传输过程, 将日球层顶(120 AU)的局地星际能谱作为边界条件, 利用交替方向隐式方法(ADI)求解传输方程, 计算银河宇宙线正电子的通量, 接着计算银河宇宙线正电子的梯度, 最后计算出0.01 GeV, 0.1 GeV, 1 GeV能量的正电子的极向各向异性和径向各向异性. 研究发现: (1) 由于低能量正电子的漂移几乎为0, 因此极向各向异性仅由扩散决定, 它的绝对值在日球层南北半球相同纬度上相等并且在黄道面处的值为0;高能量的正电子受到了漂移作用的影响, 导致极向各向异性在黄道面处的值不为0, 南北半球相同纬度上的绝对值也不相等. (2) 低能量正电子的径向各向异性仅由扩散和对流决定; 高能量正电子的径向各向异性由扩散、对流、漂移三者共同决定.另外, 黄道面处正电子的极向梯度为0, 因此任何能量的正电子在此处的径向各向异性也只由扩散和对流决定; 正电子在日球层高纬度地区由于扩散和漂移较大, 从而具有较大的径向各向异性.

  相似文献   

9.
A significant tendency is shown for both Etesians and (+, –) sector boundaries of the interplanetary magnetic field (IMF) to occur on the same solar rotation days, during the main period of the Etesians effect (July–August). In addition, the solar activity seems to control the Etesians distribution within the IMF sector structure. In the epoch of maximum there is a significant tendency of Etesians to occur during toward IMF days. In contrast, in the epoch of minimum Etesians occur mainly during away IMF days. Finally, in the epoch of intermediate the Etesians are uniformly distributed in away and toward IMF days. Since these conclusions are statistically significant at high confidence levels, it is fair to assume that IMF and solar activity seem to contribute, to some extent, to the Etesians occurrences, as well as to their distribution within the solar rotation and the IMF sector structure; that is, some solar contribution to the tropospheric circulation is implied.  相似文献   

10.
本文根据苏黎世天文台太阳黑子11年周期资料和太阳黑子磁场磁性变化周期特征,构建了太阳黑子磁场磁性指数MI(Magnetic Index)时间序列.分析表明:太阳活动磁性周期平均长度为22.2年,但是每个周期长度是不相等的;多数情况周期短时磁性指数较大,对应太阳活动水平强;周期变长时磁性指数较小,对应太阳活动水平较弱;太阳黑子磁场磁性指数序列也具有80~90年的世纪周期. 进一步研究指出,太阳黑子磁场磁性指数曲线由极小值升至极大值时期,太阳磁场南向,行星际磁场磁力线与地磁场磁力线重联,此时磁层为开磁层,太阳风将携带大量等离子体从向阳面进入地球磁层,从而使输入的动量、能量和物质大幅度增加,与北半球对流层增温时期对应;太阳黑子磁场磁性指数曲线由极大值下降至极小值时期,太阳磁场北向,与磁层顶地磁场同向,行星际磁场不会与地磁场发生重联,此时磁层为闭磁层,这种情况下,只有少数带电粒子能够穿越磁力线进入地球磁层,与北半球对流层降温时期对应.  相似文献   

11.
This paper attempts to reveal whether long-term trends in the ionosphere are reflected in the amplitude range of the geomagnetic daily variation recorded at ground level. The smooth and regular variation observed in the magnetograms on magnetically quiet days is induced by the ionospheric currents flowing in the dynamo region. So it is likely that trends in the conductivity or in the dynamics of this region could produce changes in the current densities, and consequently in the range of the geomagnetic variation. The crucial aspect is how to separate the changes produced by the geomagnetic activity itself, or by secular changes of the Earth's magnetic field, from the part of the variation produced by factors affecting trends in the ionosphere, which could have an anthropogenic origin. To investigate this, we synthesized for several geomagnetic observatories the daily ranges of the geomagnetic field components with a comprehensive model of the quiet-time, near-Earth magnetic field, and finally we removed the synthetic values from the observed ranges at those observatories. This comprehensive model accounts for contributions from Earth's core, lithosphere, ionosphere, magnetosphere and coupling currents, and, additionally, accounts for influences of main field and solar activity variations on the ionosphere. Therefore, any trend remaining in the residuals, assuming that all the contributions mentioned above are properly described and thus removed by the comprehensive model, should reflect the influence of other sources. Results, based on series of magnetic data from observatories worldwide distributed, are presented. Trends in the X and Z components are misleading, since the current system changes in form as well as in intensity, producing changes of the focus latitude in the course of a solar cycle and from one cycle to another. Some differences exist between the long-term trends in the Y component between the real and modelled ranges, suggesting that other non-direct solar causes to the amplitude changes of the solar quiet geomagnetic variation should not be ruled out. Nevertheless, the results also reflect some short-comings in the way that the comprehensive modelling accounts for the influence of the solar activity on the range of the daily geomagnetic variation.  相似文献   

12.
In a set of balloon flights in the Brazilian magnetic anomaly region (BMAr) short time periodic variations were observed, i.e. pulsation, of secondary charged and neutral particle fluxes, X- and -ray fluxes with amplitudes of about 2–4%. The pulsations are accompanied by the geomagnetic Pc4 pulsations and have similar periodicity. The phenomenon was observed over various local times and in quiet and disturbed magnetospheric conditions. One of the explanations of this effect, i.e. periodic variation of local cut-off rigidity, and following pulsations of primary and secondary cosmic ray intensity is suggested.  相似文献   

13.
In solar cycles 22–23, all solar indices showed maxima near 1990 and 2000 and minima in 1996. The maximum to minimum variation was only 1–2% in the UV range 240–350 nm. Dobson ozone intensities did not show any clear relationship with solar cycle and ozone variations were less than 10%. The UV-B (295–325 nm) observed at ground by Brewer spectrophotometers at some locations had variations of 50–100% for 295–300 nm, and 20–50% for 305–325 nm. The maxima were in different years at different locations (even with separations of only 300 km), did not match with the solar cycle, and were far too large to be explained on the basis of ozone changes (1% decrease of ozone is expected to cause 2% increase of UV-B). Thus, if the data are not bad, the UV-B changes do not match with solar activity or ozone changes and must be mostly due to other local effects (clouds, etc.?). When data are averaged over wide geographical regions, UV-B variation ranges are smaller (10–20%, probably because localised, highly varying cloud effects get filtered out), and are roughly as expected from ozone variations.  相似文献   

14.
15.
The present study reports long-term variabilities and trends in the middle atmospheric temperature (March 1998–2008) derived from Rayleigh backscattered signals received by the Nd:YAG lidar system at Gadanki (13.5°N, 79.2°E). The monthly mean temperature compositely averaged for the years 1998–2008 shows maximum temperature of 270 K in the months of March–April and September at altitudes between 45 and 55 km. The altitude profile of trend coefficients estimated from the 10 years of temperature observations using regression analysis shows that there exists cooling at the rate with 1σ uncertainty of 0.12±0.1 K/year in the lower stratospheric altitudes (35–42 km) and 0.2±0.08 K/year at altitudes near 55–60 km. The trend is nearly zero (no significant cooling or warming) at altitudes 40–55 km. The regression analysis reveals the significant ENSO response in the lower stratosphere (1 K/SOI) and also in mesosphere (0.6 K/SOI). The solar cycle response shows negative maxima of 1.5 K/100F10.7 units at altitudes 36 km, 41 km and 1 K/100F10.7 units at 57 km. The response is positive at mesospheric altitude near 67 km (1.3 K/100F10.7 units). The amplitudes and phases of semiannual, annual and quasi-biennial oscillations are estimated using least squares method. The semiannual oscillation shows larger amplitudes at altitudes near 35, 45, 62 and 74 km whereas the annual oscillation peaks at 70 km. The quasi-biennial oscillations show larger amplitudes below 35 km and above 70 km. The phase profiles of semiannual and annual oscillations show downward propagation.  相似文献   

16.
根据乌鲁木齐地磁台有史以来的地磁观测资料,对该地区地磁场的长期变,短期变及其磁暴活动规律进行了总结分析,这对进一步认识乌鲁木齐地磁台地磁场各要素的变化规律及征,为地震震预报提供有实用价值的第一手资料都是十分有意义的。  相似文献   

17.
北京地区地磁场Sq强度的季节变化和长期变化   总被引:1,自引:0,他引:1       下载免费PDF全文
吴迎燕 《地球物理学报》2018,61(9):3552-3559

本文利用北京地区的北京台(BJI)和北京十三陵台(BMT)的地磁场XYZ分量时均值数据,研究了1960年至2013年期间该地区地磁场Sq强度的季节变化和长期变化.结果表明:(1)BJI台和BMT台的地磁场Sq不仅变幅相近,而且具有一致的地方时变化、季节变化、太阳活动周变化和长期变化.(2)BJI台和BMT台Sq强度的逐月变化,其中ASqX)主要表现为春秋增强而冬夏减弱的季节变化.ASqY)呈现出夏季增强的半年变化.ASqZ)变化较为复杂.虽然在5月和9月出现减小,但是总体来看,其变化曲线也具有夏季增强的半年变化特征.同时,Sq强度与太阳活动F107指数之间存在明显的正相关关系,具有一致的11年太阳活动周变化和长期变化,反映出了Sq与太阳活动之间的密切关系.(3)BJI台和BMT台Sq强度差值dASq表明,在大多数年份,两个台站的Sq强度之差一般不超过±2 nT,同时没有明显的季节或年周期变化特征.在2000年和2001年太阳活动高年,dASq出现显著增强,最大可达12.3 nT.反映出了北京地区Sq场强度梯度的剧烈扰动与太阳活动之间的密切关系,意味着在太阳活动高年,Sq电离层发电机电流的局部结构可能发生了明显的改变.

  相似文献   

18.
Geomagnetism and Aeronomy - Long-term correlations between the state of low clouds and variations in the flux of galactic cosmic rays (GCRs) were studied. It has been shown that the links between...  相似文献   

19.
Based on a comparison of the cases of a decrease in the ratio of A n/A μ (where A n and A μ are the amplitudes of the diurnal variations of the neutron and hard cosmic ray components) to the instants of the Earth crossing the neutral IMF, it has been indicated that the process of such crossing is most effective for stimulating large destructive earthquakes with a magnitude of M ≥ 6. The 11-year period in the cyclicity of the occurrence probability of the above earthquakes has been revealed.  相似文献   

20.
从太平洋4台的分析显示,APIA,GUAM和PAMATAI台Z分量的太阳黑子周变化与HONOLULU台的相位相反。可是,CANBERRA台的变化又和HONOLULU台同相。这种表现复杂的地方性差异,更反映出太阳黑子周变化源于外场之说的有问题的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号