首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal variation in the trace metals’ concentrations (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were investigated in surface sediments of the Pandoh Lake. The horizontal distribution of TC, TN, and TP reflects spatial and temporal differences in sedimentary organic production. The chemical sequential extraction of heavy metals was carried out by seven-step fractionation scheme (Leleyter and Probst in Int J Environ Chem 73:109–128, 1999). The significant concentrations of Ni and Cd were associated with “water soluble (Eua)” fraction in the monsoon and winter, respectively, while “exchangeable (Exch)” and “carbonate-bound (Carb)” fractions for Ni and Cd were abundant in winter and summer. The Cd, Cu, and Pb associated with “Exch” fraction in the summer season support their availability on exchange sites due to oxidized nature of surface sediments. Enrichment of Co, Fe, Mn, and Zn in “AFeO” fraction showed poor bioavailability, while Cd, Cu, and Mn in the monsoon, Co in the winter and summer, and Zn in the winter season showed significant “organically bound (Org)” fraction. The ANOVA was significant for chemical fractions of trace elements except “Carb” fraction of Pb and Zn and “CFeO” fraction of Pb. Factor analysis revealed that the “Eua”, “Exch”, and “Carb” fractions together control the metal enrichment of “MnO”, “AFeO”, and “CFeO” fractions in the summer season.  相似文献   

2.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

3.
Garnet-bearing assemblages of K-rich and K-poor metapelitesfrom the Ilesha Schist belt, SW Nigeria, are investigated. K-richsamples contain the assemblages (A) garnet–staurolite–muscovite–chlorite–magnetite,(B) andalusite–garnet–staurolite–muscovite–chlorite–magnetiteand (C) sillimanite–andalusite–garnet–muscovite–chlorite–magnetite.K-poor samples contain the assemblages (D) garnet–staurolite–cordierite–chloriteand (E) garnet–cordierite–chlorite ± staurolite.All assemblages contain quartz, plagioclase, biotite and ilmenite.PT pseudosections calculated in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2 –H2O ± O2 suggest peak metamorphismat 590 ± 20°C at 5 ± 0·5 kbar, followedby retrogression to 550°C at 3·0 kbar, in agreementwith field evidence, domain assemblages, mineral compositions,modes and geothermobarometry. The absence of compositional zonationshows that garnet in all investigated rocks nucleated and grewat constant P–T–X in equilibrium with associatedminerals on the thin-section scale. However, the garnet-in reactiondid not begin until the establishment of a significant temperatureoverstep of  相似文献   

4.
 Unit-cell dimensions of a natural phlogopite from Pargas, Finland, have been determined in the temperature interval of 27–1050 °C by X-ray powder diffraction technique. Expansion rates vary discontinuously with temperature with a break at 412 °C. Below this temperature, the linear expansions (α) for a, b and c axis lengths are 3.74 × 10−5 K−1, 1.09 × 10−5 K−1, and 1.19 × 10−5 K−1, respectively, and above that they are 0.86 × 10−5 K−1, 0.80 × 10−5 K−1, and 1.93 × 10−5 K−1. The volume thermal expansion coefficients are 6.26 × 10−5 K−1 and 3.71 × 10−5 K−1 for low-temperature and high-temperature intervals, respectively. The observed kink in the rate of thermal expansions with temperature could be due to the different mode of structural changes. Thermogravimetric analysis of the sample indicates the oxidation of iron in the temperature range of 500–600 °C and dehydroxylation as well as decomposition of phlogopite in the temperature range of 900–1200 °C. Received: 8 September 1998 / Accepted: 28 February 2000  相似文献   

5.
More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentration area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between −83.8‰ and −69‰, δ18O values between 4.17‰ and 10.45‰, and δ13C values between −13.6‰ and 3.7‰, suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between −117.4‰ and −76‰, δ18O values between 5.32‰ and 9.56‰, and Δ13C values between −10.07‰ and −1.5‰. The ore-forming fluids of Sb deposits have δD values between −95‰ and −78‰, δ18O values between 4.5‰ and 32.3‰, and Δ13C values between −26.4‰ and −1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water. Affected by the collision between the Indian and Asian plates, ore-forming fluids in Weishan-Yongping basin migrated considerably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed. Translated from Mineral Deposits, 2006, 25(1): 60–70 [译自: 矿床地质]  相似文献   

6.
The present study deals with the small strain torsion deformation of MACOR glass-ceramic samples at high temperatures (450–850 °C) and over a range of low frequencies (20 Hz–5 mHz). The samples of MACOR ceramic consist of 55 vol% randomly oriented, sheet-like fluorophlogopite mica crystals (∼100–20 μm in planar size, 1–2 μm in thickness) and 45 vol% of isotropic alumino-borosilicate glass matrix. Measurements of the complex shear modulus show that the sample does not possess the relaxed shear viscosity even at temperatures above the glass transition temperature of the glass matrix. The maximum of the imaginary component G ′′() of the shear modulus is ∼0.15 of the unrelaxed value G , the relaxation strength Δ≈0.9. The activation energy of the peak of G ′′() is ∼245 kJ mol−1. Using this value of E a , the data obtained at various frequencies and temperatures have been reduced to a master curve using the dimensionless variable ωτ, where ∼0 exp(−E a /RT). The internal friction Q−1(ωτ) is ∝1/()0.35−0.4 in the low-temperature high-frequency range (1); passes through a maximum at ∼1 and trends asymptotically to a value Q−1∼0.25–0.30 at ≪1. The behaviour of Q −1(ωτ) differs from that of a Caputo body by the presence of the resolved peak which may be attributed to the slow mechanical relaxation of mica crystals due to rotation as well as flexing and bending modes of crystal deformation. Received: 26 June 1998 / Revised, accepted: 13 January 1999  相似文献   

7.
Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.  相似文献   

8.
 The structural behavior of stuffed derivatives of quartz within the Li1− x Al1− x Si1+ x O4 system (0 ≤ x ≤ 1) has been studied in the temperature range 20 to 873 K using high-resolution powder synchrotron X-ray diffraction (XRD). Rietveld analysis reveals three distinct regimes whose boundaries are defined by an Al/Si order-disorder transition at x=∼0.3 and a β–α displacive transformation at x=∼0.65. Compounds that are topologically identical to β-quartz (0 ≤ x < ∼0.65) expand within the (0 0 1) plane and contract along c with increasing temperature; however, this thermal anisotropy is significantly higher for structures within the regime 0 ≤ x < ∼0.3 than for those with compositions ∼0.3 ≤ x < ∼0.65. We attribute this disparity to a tetrahedral tilting mechanism that occurs only in the ordered structures (0 ≤ x < ∼0.3). The phases with ∼0.65 ≤ x ≤ 1 adopt the α-quartz structure at room temperature, and they display positive thermal expansion along both a and c from 20 K to their α–β transition temperatures. This behavior arises mainly from a rotation of rigid Si(Al)-tetrahedra about the <100> axes. Landau analysis provides quantitative evidence that the charge-coupled substitution of Li+Al for Si in quartz dampens the α–β transition. With increasing Li+Al content, the low-temperature modifications exhibit a marked decrease in spontaneous strain; this behavior reflects a weakening of the first-order character of the transition. In addition, we observe a linear decrease in the α–β critical temperature from 846 K to near 0 K as the Li+Al content increases from x=0 to x=∼0.5. Received: 26 June 2000 / Accepted: 1 December 2000  相似文献   

9.
The Eastern Iberian Central System has abundant ore showings hosted by a wide variety of hydrothermal rocks; they include Sn-W, Fe and Zn-(W) calcic and magnesian skarns, shear zone- and episyenite-hosted Cu-Zn-Sn-W orebodies, Cu-W-Sn greisens and W-(Sn), base metal and fluorite-barite veins. Systematic dating and fluid inclusion studies show that they can be grouped into several hydrothermal episodes related with the waning Variscan orogeny. The first event was at about 295 Ma followed by younger pulses associated with Early Alpine rifting and extension and dated near 277, 150 and 100 to 20 Ma, respectively (events II–IV). The δ18O-δD and δ34S studies of hydrothermal rocks have elucidated the hydrological evolution of these systems. The event I fluids are of mixed origin. They are metamorphic fluids (H2O-CO2-CH4-NaCl; δ18O=4.7 to 9.3‰; δD ab.−34‰) related to W-(Sn) veins and modified meteoric waters in the deep magnesian Sn-W skarns (H2O-NaCl, 4.5–6.4 wt% NaCl eq.; δ18O=7.3–7.8‰; δD=−77 to −74‰) and epizonal shallow calcic Zn-(W) and Fe skarns (H2O-NaCl, <8 wt% NaCl eq.; δ18O=−0.4 to 3.4‰; δD=−75 to −58‰). They were probably formed by local hydrothermal cells that were spatially and temporally related to the youngest Variscan granites, the metals precipitating by fluid unmixing and fluid-rock reactions. The minor influence of magmatic fluids confirms that the intrusion of these granites was essentially water-undersaturated, as most of the hydrothermal fluids were external to the igneous rocks. The fluids involved in the younger hydrothermal systems (events II–III) are very similar. The waters involved in the formation of episyenites, chlorite-rich greisens, retrograde skarns and phyllic and chlorite-rich alterations in the shear zones show no major chemical or isotopic differences. Interaction of the hydrothermal fluids with the host rocks was the main mechanism of ore formation. The composition (H2O-NaCl fluids with original salinities below 6.2 wt% NaCl eq.) and the δ18O (−4.6 to 6.3‰) and δD (−51 to −40‰) values are consistent with a meteoric origin, with a δ18O-shift caused by the interaction with the, mostly igneous, host rocks. These fluids circulated within regional-scale convective cells and were then channelled along major crustal discontinuities. In these shear zones the more easily altered minerals such as feldspars, actinolite and chlorite had their δ18O signatures overprinted by low temperature younger events while the quartz inherited the original signature. In the shallower portions of the hydrothermal systems, basement-cover fluorite-barite-base metal veins formed by mixing of these deep fluids with downwards percolating brines. These brines are also interpreted as of meteoric origin (δ18O< ≈ −4‰; δD=−65 to −36‰) that leached the solutes (salinity >14 wt% NaCl eq.) from evaporites hosted in the post-Variscan sequence. The δD values are very similar to most of those recorded by Kelly and Rye in Panasqueira and confirm that the Upper Paleozoic meteoric waters in central Iberia had very negative δD values (≤−52‰) whereas those of Early Mesozoic age ranged between −65 and −36‰. Received: 9 June 1999 / Accepted: 19 January 2000  相似文献   

10.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

11.
Experiments were conducted at 1 GPa on four starting materials to investigate the effects of variable mineral proportions on the melting systematics of compositionally fertile peridotitic assemblages. Starting materials were constructed by recombining Kilbourne Hole xenolith mineral separates by weight into four mixtures with mineral proportions olivine (Ol): orthopyroxene (Opx): clinopyroxene (Cpx): spinel (Sp) of 0.50:0.07:0.40:0.03 (FER-B), 0.50:0.46:0.01:0.03 (FER-C), 0.50:0.30:0.10:0.10 (FER-D), and 0.50:0.235:0.235: 0.03 (FER-E). Experiments were performed on a 1.27-cm (0.5 in.) piston-cylinder apparatus over the temperature interval 1270–1390 °C, using a variation of the diamond aggregate melt extraction technique employing vitreous carbon spheres in place of diamonds as the melt extraction layer. The solidus temperatures are similar for all the starting materials, with an average value of 1250 °C. In FER-D and -E, the near-solidus melting reaction for a lherzolite assemblage was determined to be of the form Cpx + Opx + Sp → melt + Ol. A subsequent reaction of the form Opx + Sp → melt + Ol was determined for FER-D after the exhaustion of Cpx. Over the entire temperature interval investigated for FER-B and -C, reactions were determined to be of the form Cpx + Sp → melt + Ol and Opx + Sp → melt + Ol, respectively. Melt percent (F) vs temperature (T) curves are concave up for all starting materials, demonstrating that isobaric melt productivity increases with progressive batch melting. At any given melt fraction, (dF/dT)P increases with increasing amount of Cpx in the starting material, indicating that the modal proportion of Cpx is one of the primary controls on isobaric melt productivity of upwelling peridotite. The concave up melt productivity functions for peridotitic assemblages determined in this study suggest that assuming linear or concave down melt productivity functions for modeling mantle melting may not be appropriate. Received: 2 August 1999 / Accepted: 7 June 2000  相似文献   

12.
A detailed ore microscopic study strengthened by fire assay data of Al Wajh stream sediments (Wadi Al Miyah, Wadi Haramil and Wadi Thalbah) in northwestern Saudi Arabia shows economic concentrations of gold in the silt fraction (40–63 μm). However, particles of extremely fine “dusty” gold (≤40 μm in size) were also identified in most stations as independent grains. The maximum gold content in the samples of Wadi Al Miyah is 13.61 wt%, which is reported for the heavy fraction (<40 μm). Maximum gold content in the heavy fractions of Wadi Haramil stream sediments amounts 6.90 g/t Au in a relatively coarse fraction (63–125 μm). It appears that the most fertile heavy fraction in gold among the analysed samples are those from Wadi Thalbah that have the highest index figure, which makes the placer gold in them more profitable from the economic point of view. The gold content in the heavy fractions of samples from Wadi Thalbah is economically high lying in the range 6.27–28.83 g/t Au, except for a sample collected at the upstream with 0.77 g/t Au. Al Wajh stream sediments (including the beach light and black sands) are also rich in Fe–Ti oxides, rutile and zircon, whereas monazite and thorite are much lesser. Mineral chemistry of magnetite indicates a distinct titanomagnetite variety (with 3.85 wt% TiO2) which is consistent with the ore microscopic investigation. The titanomagnetite is V- and Cr-free, which indicates derivation from a more felsic source than a mafic one. No traces of U were found in zircon that sometimes bears up to 2.74 wt% Hf2O3. Chemical analyses of monazite show typical common contents of rare earth elements such as La, Ce, Nd and Sm. Thorite is either U-free or uranothorite varieties where the latter contains up to 31.79 wt% UO2. One of the U-free thorite grains is Y-bearing and contains 7.13 wt% Y2O3.
كيميائية المعادن من التحليل التقديري الناري لرسوبيات الوديان في منطقة الوجه- شمال غرب المملكة العربية السعودية
توضح الدراسة المجهرية للخامات المعدنية والتي تعضدها بيانات التحليل التقديري الناري لرسوبيات الوديان بمنطقة الوجه (وادي المياه، وادي حرامل، وادي ثلبة) في شمال المملكة العربية السعودية، أن هناك تركيزات اقتصادية للذهب في كسرة الغرين التي يتراوح حجمها من 40 إلى 63 ميكرومتر. في معظم الحالات المدروسة تم رصد حبيبات من الذهب الطليق متناهية الصغر (أقل أو تساوي 40 ميكروميتر). كما اتضح أيضا أن أعلى محتوى لفلز الذهب وجد في القطفات المعدنية الثقيلة دقيقة الحجم المأخوذة من وادي المياه والتي تقدر 13.61 جرام/الطن. أما المحتوى الأعلى في القطفات المعدنية الثقيلة الأكبر نسبيا في الحجم (تتراوح من 63 إلى 125 ميكروميتر) المأخوذة من الرواسب الوديانية بوادي حرامل يصل إلى 6.90 جرام/طن. ويبدو أن القطفات الثقيلة لرسوبيات وادي ثلبة الوديانية هي الأخصب من حيث محتوى الذهب وتلك العينات لها شكل مميز مما يجعل ذهب المراقد بذلك الوادي ذو ربحية مشجعة وذلك من الناحية الاقتصادية. وتتراوح التركيزات الاقتصادية للذهب في عينات وادي ثلبة بين 6.27 - 28.83 جرام/طن باستثناء عينة وحيدة تم تسجيل كمية ذهب بها لا تتعدى 0.77 جرام/طن. عينات الرواسب الوديانية بمنطقة الوجه (بما في ذلك الرمال الشاطئية السوداء والفاتحة اللون) غنية بمعادن خامات أكاسيد الحديد والتيتانيوم والروتيل والزيركون، بالإضافة إلى كميات أقل بكثير من معدني المونازيت والثوريت. وتوضح كيمياء المعادن أن معدن الماجنيتيت غني بالتيتانوماجنيتيت (ماجنيتيت تيتاني به 3.85% من ثاني أوكسيد التيتانيوم) وهو ما أثبتته أيضا الدراسة المجهرية. وهذا الماجنيتيت التيتاني لا يحتوي على عنصري الكروم والفاتيديوم مما يعطي دلالة على أن هذه الصخور فلسية أكثر منها مافية، وأن الزيركون الموجود لا يحتوي على عنصر اليورانيوم بينما يحتوي على أكسيد هافتيوم حتى 2.74%. أما التحاليل الكيميائية للمونازيت فإنها تظهر وجود كميات من العناصر الأرضية النادرة مثل اللانثاتوم والسيريوم والنيوديوم والسماريوم. أما معدن الثوريت فقد تم تسجيل نوعان منه أحدهما لا يحتوي على اليورانيوم أما الآخر فيحتوي على 31.79% من ثاني أوكسيد اليورانيوم. ولقد اكتشف في إحدى حبيبات الثوريت أنها لا تحتوي على اليورانيوم ولكنها تحتوي على عنصر أكسيد الأيتريوم تصل نسبته إلى 7.13%.
  相似文献   

13.
 The electrical properties of opal-CT are validated at temperatures from 600 to 840 °C and frequencies from 5 Hz to 10 MHz. The opals are hydrothermal, containing less than 11270 ppm total of Al, Fe, Ca, Na, and K, and from 1.17 to 17.63 wt% H2O interstitial and structural. Opal-CT shows fine crystallites, measuring from 19.4 to 22.7 μm, of an ordered tridymite-M stratification with high-cristobalite, embedded in a non-crystalline matrix. When heated to 600 °C, the non-crystalline phase devitrifies to the same stacked high-cristobalite-tridymite-M crystals. Opals containing less than 2070 ppm of cationic impurities are characterized by one single high-frequency complex impedance arc corresponding to the bulk polarization of the crystalline phase, of capacitances between 25 and 30×10−12 F and resistances from 132 to 890 ohm. Opals having over 6300 ppm of cationic impurities show two superimposed high- and low-frequency complex impedance arcs. The high-frequency arc corresponds to the bulk polarization of the crystalline phase, of capacitance between 8 and 15.7×10−12 F and resistance from 14 to 236 ohm, less than the capacitance of 0.25 to 0.53×10−9 F and resistance from 26 to 360 ohm of the non-crystalline minor intergranular material represented by the low-frequency impedance arc. The electric module shows one single vertex, ascribed to the bulk polarization of the crystalline phase. The conductivities are from 10−7 to 10−4 ohm−1cm−1, in the range of poor ionic conductors, essentially constant below 1.8 kHz, rapidly increasing at higher frequencies, due to ionic and electronic charge carriers. The activation energy changes between 0.905 and 1.003 eV for the conduction mechanism in the crystalline phase and from 0.924 to 1.087 eV in the non-crystaline phase. X-ray diffraction and impedance spectroscopy confirm that opal-CT is a crystalline stacked sequence of tridymite-M and cristobalite-high, in a non-crystalline matrix. Received October 20, 1995/Revised, accepted June 15, 1996  相似文献   

14.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

15.
Summary Fe-Ti-P-rich rocks (FTP) are unusual with respect to their mineralogy and bulk composition. Varieties of these rocks are mostly related to Proterozoic massif-type anorthosites and to a lesser extent to the upper parts of mafic-ultramafic intracratonic layered complexes and other igneous rock suites. We present results on the geology, mineralogy and geochemistry of a new occurrence of FTP, associated with mafic rocks in the northwestern part of Iran. The Qareaghaj mafic-ultramafic intrusion (QMUI) is a small igneous body situated between Palaeozoic sedimentary rocks and a Precambrian low grade metamorphic complex. The QMUI is composed mainly of non-mineralized mafic and apatite- and Fe-Ti oxide-rich ultramafic rocks. The mafic rocks, mainly coarse-grained gabbro, microgabbro and amphibolite, have a simple mineral assemblage (plagioclase + clinopyroxene + ilmenite) and based on field observations, mineralogy and chemical composition are comagmatic. The ultramafic rocks with high proportion of olivine (∼40–66 vol.%), apatite (∼0.1–16 vol.%), ilmenite (∼11–19 vol.%) and magnetite (∼2–13 vol.%), have unusual bulk compositions (e.g., SiO2 ∼ 21–30 wt.%, total iron expressed as Fe2O3 tot ∼ 26–42 wt.%, TiO2 ∼ 5–11 wt.%, MgO ∼ 9–20 wt.%, P2O5 up to 5.1 wt.%, Cr ∼ 40–160 ppm, Ni ∼ 7–73 ppm). The FTP forms numerous sill-like layers, ranging in thickness from ∼5 cm to few meters. These rocks, totally enclosed in mafic rocks with sharp and concordant contacts, show a magmatic lamination and follow the general NW–SE trend of QMUI. The apatite-rich ultramafic rocks makes up 90–95% of the total ultramafic outcrops and contain Mg-poor olivine (Mg# ∼ 40–58) and low-Mg spinel (Mg# ∼ 30–44) in contrast to apatite-poor ones (∼60–63 and ∼43–46, respectively). Field relationships, mineral compositions and geochemical data suggested that the FTP are not related to the mafic host rocks. On the contrary, they intruded latter into the gabbros during plastic, high temperature deformation in local shear zones. Fractional crystallization of P-rich ferrobasaltic parental magma at depth, probably in an open magmatic system, not far from the QMUI magma chamber, is considered as responsible for the formation of the evolved FTP in QMUI.  相似文献   

16.
Isobaric volume measurements for MgO were carried out at 2.6, 5.4, and 8.2 GPa in the temperature range 300–1073 K using a DIA-type, large-volume apparatus in conjunction with synchrotron X-ray powder diffraction. Linear fit of the thermal expansion data over the experimental pressure range yields the pressure derivative, (∂α/∂P) T , of −1.04(8) × 10−6 GPa−1 K−1 and the mean zero-pressure thermal expansion α0, T  = 4.09(6) × 10−5 K−1. The α0, T value is in good agreement with results of Suzuki (1975) and Utsumi et al. (1998) over the same temperature range, whereas (∂α/∂P) T is determined for the first time on MgO by direct measurements. The cross-derivative (∂α2/∂PT) cannot be resolved because of large uncertainties associated with the temperature derivative of α at all pressures. The temperature derivative of the bulk modulus, (∂K T/∂T) P , of −0.025(3) GPa K−1, obtained from the measured (∂α/∂P) T value, is in accord with previous findings. Received: 2 April 1999 / Revised, accepted: 22 June 1999  相似文献   

17.
Fluid inclusions in garnet, kyanite and quartz from microdiamond-bearing granulites in the Western Gneiss Region, Norway, document a conspicuous fluid evolution as the rocks were exhumed following Caledonian high- and ultrahigh-pressure (HP–UHP) metamorphism. The most important of the various fluid mixtures and daughter minerals in these rocks are: (N2 + CO2 + magnesian calcite), (N2 + CO2 + CH4 + graphite + magnesian calcite), (N2 + CH4), (N2 + CH4 + H2O), (CO2) and (H2O + NaCl + CaCl2 + nahcolite). Rutile also occurs in the N2 + CO2 inclusions as a product of titanium diffusion from the garnet host into the fluid inclusions. Volatiles composed of N2 + CO2 + magnesian calcite characterise the ambient metamorphic environment between HP–UHP (peak) and early retrograde metamorphism. During progressive decompression, the mole fraction of N2 increased in the fluid mixtures; as amphibolite-facies conditions were reached, CH4 and later, H2O, appeared in the fluids, concomitant with the disappearance of CO2 and magnesian calcite. Graphite is ubiquitous in the host lithologies and fluid inclusions. Thermodynamic modelling of the metamorphic volatiles in a graphite-buffered C-O-H system demonstrates that the observed metamorphic volatile evolution was attainable only if the f O2 increased from c. −3.5 (±0.3) to −0.8 (±0.3) log units relative to the FMQ oxygen buffer. External introduction of oxidising aqueous solutions along a system of interconnected ductile shear zones adequately explains the dramatic increase in the f O2. The oxidising fluids introduced during exhumation were likely derived from dehydration of oceanic crust and continental sediments previously subducted during an extended period of continental collision in conjunction with the Caledonian orogeny. Received: 15 December 1997 / Accepted: 25 May 1998  相似文献   

18.
The Janggun iron deposits, Republic of␣Korea, occur as lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. Mineralization stage of the deposits can be divided into two separate events. The skarn stage (107 Ma) consists of magnetite, pyrrhotite, base-metal sulfides, carbonates and magnesian skarn minerals. The hydrothermal stage (70 Ma) consists of base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. Mineral assemblages, chemical compositions and thermodynamic considerations indicate that formation temperatures, −log fs2 and −log fo2 values of ore fluids from the skarn stage were 433 to 345 °C, 8.1 to 9.7 bar and 29.4 to 31.6 bar, and the hydrothermal stage was 245 to 315 °C, 10.4 to 13.2 bar and 33.6 to 35.4 bar, respectively. Thermochemical considerations indicate that the XCO2 during magnesian skarnization ranged from 0.06 to 0.09, and the activity of H+ presumably decreased when the fluids equilibrated with host dolomitic limestone which resulted in a pH change from about 6.1 to 7.8, and decreases in fo2 and fs2. The δ34S values of ore sulfides have a wide range from 3.2 to 11.6 ‰ (CDT). Calculated 34SH2 S values of ore fluids are 2.9 to 5.4 ‰ (skarn stage) and 8.7 to 13.5 ‰ (hydrothermal stage). These are interpreted to represent an initial deep-seated, igneous source of sulfur which gave way to influence of oxidized sedimentary sulfur to hydrothermal stage. The δ13C values of carbonates in ores range from −4.6 to −2.5 ‰ (PDB). It is likely that carbon in the ore fluids was a mixture of deep-seated magmatic carbon and dissolved carbon of dolomitic limestone. The δ18OH2 O and δD values (SMOW) of water in the ore fluids were 14.7 to 1.8 and −85 to −73 ‰ during the skarn stage and 11.1 to −0.2 and −87 to −80 ‰ in the hydrothermal stage. Received: 5 March 1997 / Accepted: 28 August 1997  相似文献   

19.
To decipher the origin of oxygen-deficient shelfal deposits is significant for tracing the distribution of marine source rocks and interpreting the evolution of depositional environment. The origin of the Middle Permian Chihsia Formation in South China remains a puzzle for long with its evident oxygen-deficient features but diverse benthos. This paper shows a typical Chihsian depositional rhythm composed of the massive and the laminated limestones with ecological and geochemical features. Massive bioclastic limestone from the rhythm was aerobic in paleoxygenation condition indicated by both the ecological and geochemical features. However, a contradictory oxygenation was inferred for the “laminated” counterpart from the rhythm, with the ecological signal being aerobic and the geochemical one being anoxic. The difference in ecological and geochemical indications was interpreted as the instability of paleoxygenation condition in shelf environments, caused by an enhanced paleoproductivity. Rhythmic occurrence of the oxygen-deficient condition might have been stemmed from paleo-Tethyan paleocurrents flowing across South China. __________ Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6): 789–796 [译自: 地球科学—中国地质大学学报]  相似文献   

20.
Oxygen isotopic composition of emerald from 62 occurrences and deposits in the world reveals a wide range in δ18O (SMOW) between +6.2 and +24.7‰. The δ18O-values for each deposit are restricted and can be used to determine the origin of emerald from the world's most important producers. The δ18O-value of emerald appears to be a fingerprint of its origin, especially for gems of exceptional quality from Colombia (eastern emerald zone, δ18O = +16.8 ± 0.1‰; western emerald zone, δ18O = +21.2 ± 0.5‰), Afghanistan (δ18O = +13.5 ± 0.1‰), Pakistan (Swat-Mingora districts, δ18O = +15.7 ± 0.1‰), Brazil (Santa Terezinha de Goiás, δ18O = +12.2 ± 0.1‰; Quadrilatero Ferrifero, δ18O = +6.9 ± 0.4‰) and Zimbabwe (Sandawana, δ18O = +7.5 ± 0.5‰). Furthermore, the 18O-composition of emerald appears to be a good marker of its geological environment because the data suggest that host-rock-buffering of fluid δ18O is considerable during fluid-rock interaction. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号