首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

2.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

3.
ROSE  N. M.; BIRD  D. K. 《Journal of Petrology》1987,28(6):1193-1218
Layered gabbros at Nordre Aputit?q and Kruuse Fjord were emplacedduring extensional tectonism that led to the formation of theNorth Atlantic basin in the Early Tertiary. Sub-solidus reactionsbetween the gabbros and hydrothermal fluids formed superimposedalteration assemblages in fractures, cavities, and the adjacentgabbros. The earliest secondary minerals are Ca-Al amphibole+ clinopyroxene + biotite ? plagioclase that form thin veinsor porous pegmatitic masses. These minerals are crosscut, overgrownor partially replaced by one or more generations of prehniteand epidote bearing assemblages associated with filling of thefractures and cavities, and with extensive wall rock albitization. Wide variations in the partitioning of Fe3+ and Al between coexistingprehnite and epidote solid solutions occur in these alteredgabbros. The partitioning data define distinct clusters in termsof associated mineralogy and paragenetic relations. This, togetherwith prehnite and epidote compositions from active geothermalsystems, are used to evaluate the thermodynamic properties ofthe intercrystalline exchange reaction:When compared to thecompositions of prehnite and epidote in the Nordre Aputit?qand Kruuse Fjord intrusions, it is concluded that the latestand lowest temperature generations of prehnite and epidote displaydisequilibrium partitioning of Fe3+ and Al, manifested by theoccurrence of prehnite that is relatively enriched in Fe3+ Thermodynamic analysis of phase relations in the system Na2O-CaO-Al2O3-Fe2O3-FeO-SiO2-H2O-HClis used to determine local equilibrium constraints on Fe3+-Alsubstitution in prehnite and epidote. It appears that parageneticand compositional relations of prehnite and epidote are sensitiveindicators of local fluctuations in fluid composition and temperature.The complex magmatic and structural history of the gabbros atNordre Aputit?q relative to Kruuse Fjord is considered to beresponsible for the differences in mineral paragenesis and compositionsof prehnite and epidote within these intrusions.  相似文献   

4.
The Cazadero blueschist allochthon lies within the Central MelangeBelt of the Franciscan assemblage in the northern Coast Rangeof California. Mineral compositions and assemblages of morethan 200 blueschists from Ward Creek were investigated. Theresults delineate lawsonite-, pumpellyite-, and epidote-zones.The lawsonite and pumpellyite zones are equivalent to the TypeII metabasites of Coleman & Lee (1963) and are characterizedby well-preserved igneous textures, relict augite, and pillowstructures, whereas epidote zone rocks are equivalent to theType III strongly deformed and schistose metabasites. Chlorite,phengite, aragonite, sphene, and minor quartz and albite areubiquitous. The lawsonite zone metabasites contain lawsonite ( < 3 wt.per cent Fe2O3), riebeckite-crossite, chlorite, and Ca-Na-pyroxene;some rocks have two distinct clinopyroxenes separated by a compositionalgap. The clinopyroxene of the lowest grade metabasites containsvery low Xjd. In pumpellyite zone metabasites, the most commonassemblages contain Pm + Cpx + Gl + Chl and some samples withhigher Al2O3 and/or Fe2O3 have Pm + Lw + Cpx + Chl, Actinolitejoins the above assemblage in the upper pumpellyite zone wherethe actinolite-glaucophane compositional gap is well defined.The epidote zone metabasites are characterized by the assemblagesEp + Cpx + two amphiboles + Chl, Lw + Pm + Act + Chl, and Ep+ Pm + two amphiboles + Chl depending on the Fe2O3 content ofthe rock. In the upper epidote zone, winchite appears, Fe-freelawsonite is stable, pumpellyite disappears and omphacite containsvery low Ac component. Therefore, the common assemblages areEp + winchite + Lw, and Lw + Omp + winchite. With further increasein metamorphic grade, epidote becomes Al-rich and lawsoniteis no longer stable. Hence Ep + winchite + omphacite ? garnetis characteristic. Mineral assemblages and paragenetic sequences delineate threediscontinuous reactions: (1) pumpellyite-in; (2) actinolite-in;and (3) epidote-in reactions. Using the temperatures estimatedby Taylor & Coleman (1968) and phase equilibria for Ca-Na-pyroxenes,the PT positions of these reactions and the metamorphicgradient are located. All three metabasite zones occur withinthe aragonite stability field and are bounded by the maximumpressure curve of Ab = Jd + Qz and the maximum stabilities ofpumpellyite and lawsonite. The lawsonite zone appears to bestable at T below 200?C with a pressure range of 4–6?5kb; the pumpellyite zone between 200 and 290?C and the epidotezone above 290?C with pressure variation between 6?5 and 9 kb.The metamorphic field gradient appears to have a convex naturetowards higher pressure. A speculative model of underplatingseamounts is used to explain such feature.  相似文献   

5.
Pressures, temperatures, water activities (aH2O) and fugacitiesof the other C-O-H fluid species have been estimated on a traverseacross the amphibolite-granulite facies boundary in the MajorParagneiss, northwest Adirondacks, N.Y. Two-feldspar pairs givetemperatures ranging from 650?C in the central portion of theunit to 760?C towards the northeast. Biotite-garnet pairs giveerratic temperatures compared to two-feldspar temperatures.This discrepancy appears to be due to retrograde resetting asdetermined from compositional zoning patterns in biotites andgarnets. Some of the discrepancy may also be due to non-idealityof pyrope-almandine mixing or to non-ideality from other components.Pressures ranging from 5?4 kb for the southwestern portion ofthe unit to 8?0 kb in the northeast were determined from anorthite-grossular-sillimanite-quartzbarometry. Minimum pressures of 5?8 kb were also determinedfrom coexisting garnet + rutile. Values of aH2O of 0?08-0?5estimated from biotite and muscovite dehydration reactions showno correlation with grade. The variability in aH2O suggeststhat it is locally controlled and that a homogeneous, pervasivefluid was not present during high grade metamorphism. Graphiteequilibria indicate that fO2 was less than 0?5 log units belowQFM and that if a fluid was present, it was rich in CO2 andH2O. P-T-aH2O values suggest that partial melting did not occurduring metamorphism. Pervasive flooding with CO2 does not appearto have occurred. The amphibolite-granulite transition at thislocality is characterized by increasing temperature and pressure.  相似文献   

6.
The Upper Triassic Karmutsen Subgroup of northeastern VancouverIsland exhibits a clear-cut contact metamorphism of basalticflows, pillows, and pillow breccias in the aureoles of the CoastRange Intrusions. The thermal effect is superimposed upon prehnite-pumpellyitefacies regional metamorphic rocks. The metamorphism of flowsis nearly isochemical except for H2O. Aquagene tuffs and pillowbreccias, which have undergone extensive chemical alterationthrough diagenesis and burial metamorphism, involve considerablemetasomatism (gain of Si, Na, and Ca and loss of Fe, Mg, andTi) and approach the original basaltic composition in the contactzone. Two prograde metamorphic zones are recognized: an actinolite-chlorite-epidote-albitezone, about 2600 m wide; and a hornblende-calcic plagioclase(An>20) zone, about 900 m wide. Microprobe analyses indicatethat (1) amphibole increases in Al2O3, TiO2, and Na2O and chloritein Al2O3 with progressive metamorphism; (2) the pistacite contentof epidote decreases from Ps = 30 in the prehnite-pumpellyitezone to Ps = 25 in the epidote-actinolite zone; and (3) theAn content of plagioclase jumps from An0004 for the outerthermal zone to An 2070 for the inner zone with a compositionalgap between An04 and An20. The following evidence suggests a low-pressure contact metamorphiccondition and therefore a shallow level of the intrusion: (1)the occurrence of prehnite-actinolite-chlorite and absence ofpumpellyite-actinolite-chlorite in the outer thermal zone; (2)wide compositional gaps in both amphibole and plagioclase acrossthe metamorphic zones; (3) absence of an albite-epidote-hornblendeassemblage in transition zone; and (4) the thickness of thesection (Quatsino-Bonanza) overlying the Karmutsen. Mineralparageneses and inferred phase relations suggest that the transitionfrom the prehnite-pumpellyite zone to the epidoteactinolitezone occurs at about 350 ?C and from the epidote-actinolitezone to the plagioclase-hornblende zone at about 470–500?C at relatively high fo2 conditions.  相似文献   

7.
Carbonate scapolite is a potentially powerful mineral for calculatingCO2 activities in non-calcareous rocks, but an analysis of thethermodynamics and phase equilibria of carbonate scapolite isfirst necessary. This includes an evaluation of Al-Si disorderin meionite, as this has the greatest effect on derived phaserelations. Available experimental data on meionite stability,X-ray diffraction refinements and nuclear magnetic resonancespectra for calcic scapolite do not uniquely constrain the Al-Siordering state of synthetic meionite. However, the data aremost consistent with a high degree of Al-Si disorder and inconsistentwith long-range Al-Si order. An internally consistent thermodynamicdata set was derived and used to calculate P-T and T-XCO2 equilibriainvolving meionite in the CaO-Al2O3-SiO2-CO2-H2O (CASCH) system.The effect of Al-Si disorder is illustrated by calculating thephase equilibria using an ordered, an arbitrary intermediatedisordered, and a completely Al-Si disordered standard statefor meionite. The Gibbs free energy of meionite was calculatedfrom reversals (at 790–815?C, 2–15 kb) on the reaction 3 Anorthite +Calcite =Meionite The fG?m, 298 for each of the standard states is –13 146?6,–13128?8, and –130930kJ/mol, respectively. Becauseof the steep slope of reaction (1) and limited temperature rangeover which it breaks down, meionite used in the experimentsto constrain reaction (1) must possess a limited range of Al-Sidisorder. The P-T slope of reaction (1) increases, and the slopeof meionite decarbonation equilibria changes from positive tonegative in T-XCO2 and P-T space, as a function of increasingAl-Si disorder. Meionite has a wide stability field at highT in T-X space at 5 and 10 kb (PTotal=PFluid), being stableto XCO2=0?06. Meionite alone breaks down to undersaturated gehleniteand/or corundum-bearing assemblages at 5 kb, and to clinozoisiteat 10 kb. The effect of solid solutions on the T-X stabilityof meionite is similar to that of increasing pressure, stabilizingmeionite to lower temperature. Variable Al-Si disorder doesnot significantly affect the upper limit of meionite stabilityin T-XCO2 space. Activity-composition relations for meionitein carbonate scapolite were calculated relative to reaction(1) from data on natural scapolite-plagioclase-calcite assemblages.The extent of departure from ideality varies as a function ofAl-Si disorder. Negative deviations from ideality are indicatedfor natural scapolite solid solutions at T<750?C, based ona disordered Al-Si standard state for meionite. This is likelyto reflect a more ordered Al-Si distribution in natural scapolitescompared with the synthetic endmember standard state. Present address: Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794-2100  相似文献   

8.
The Adula Nappe is a slice of Pre-Mesozoic continental basementaffected by Early Alpine (Mesozoic or Lower Tertiary) high-pressuremetamorphism. Mineral compositions in mafic rocks containingomphacite + garnet + quartz record a continuous regional trendof increasing recrystalliza tion temperatures and pressuresthat can be ascribed to this regional high-pressure metamorphicevent. P-T estimates derived from mineral compositions gradefrom about 12 kb and 500 ?C or less in the north of the nappeto more than 20 kb/800 ?C in the south. The regional P-T trend is associated with a mineralogical transitionfrom assemblages containing additional albite and abundant amphiboles,epidote minerals, and white micas in the north (omphacite-garnetamphibolites) to kyanite eclogites containing smaller amountsof hornblende and zoi.site in the south. Textures and mineralcompositional data show that these hydrous and anhydrous silicatesassociated with omphacite + garnet + quartz arc primary partsof the high-pressure assem blages. Observed phase relationsbetween these primary silicates, theoretical Schreinemakersanalysis, and the thermobarometric results, together indicatethat the regional transition from omphacite amphibolites tokyanite eclogites can be described by two simplified reactions: alb+epi+hbl=omp+kya+qtz+par (H2O-conserving) (15) par+epi+hbl+qtz=omp+kya+H2O (dehydration) (12) which have the character of isograd reactions. Local variations of water activity (aH2O) as indicated by isofacialmineral assemblages, and the H2O character of the reaction (15),are interpreted to reflect largely H and predominantly fluid-absenthigh-pressure metamorphism within the northern part of the nappe.The omphacite amphibolites and paragonite eclogites in thisarea are thought to have formed by H2O reactions from Pre-Mesozoichigh-grade amphibolites, i.e. from protoliths of similar bulkH2O-countent. The second ‘isograd’ (12) is interpreted to markthe regional transition from largely fluid-absent metamorphismin the north to fluid-present metamorphism in the south, wheremetamorphic pressures and temperatures in excess of 12-15kband 500-600?C were sufficient for prograde in-situ dehydrationof similar hydrous protoliths to kyanite eclogites. The observationof abundant veins, filled with quartz+kyanite+omphacite, suggeststhat a free fluid coexisted locally with the kyanite eclogitesof the southern Adula Nappe at some time during progressivedehydration.  相似文献   

9.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

10.
Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH)   总被引:2,自引:0,他引:2  
LIOU  J. G. 《Journal of Petrology》1973,14(3):381-413
Hydrothermal investigation of the bulk composition 2CaO·Al2O3·l/2Fe2O2·3SiO2+excessH2O (Ps 33 +excess H2O) has been conducted using conventionalapparatus and solid oxygen buffer techniques. Coarse-grainedepidotes (over 150 microns in some cases) were readily synthesizedfrom oxide mixtures with a 98 per cent yield as well as fromtheir high temperature equivalents at 600–700 °C and5 kb Pfluid and over a range of oxygen fugacities. Electronmicroprobe analyses show that maximum Fe+3 content of syntheticepidotes varies as a function of fo2. Epidote is most iron-rich(Ps 33 ± 2) at high (HM and CCO) oxygen buffers and becomesprogressively more aluminous (Ps 25 ± 3) with decreasingfo2 values and temperatures. Such variation is consistent withthe change of refractive indices and cell dimensions. The meanrefractive indices and cell dimensions for synthetic epidote(Ps 33) are N = 1.745 ± 0.005, N = l.786±0.005,a = 8.920±0.005 Å, b = 5.645±0.004 Å,c = 10.190 ű0.006 Å, and ß = 115°31'±4' and for epidote (Ps 25) are N = 1.735±0.005,N = 1.775±0.005, a = 8.891±0.005 Å, b =5.625±0.004 Å, c = 10.177±0.006 Å,and ß = 115° 30'±3'. Mössbauer spectraindicate synthetic epidotes are relatively disordered. Garnets of intermediate composition in the grossular-andraditeseries were synthesized and the cell dimensions and refractiveindices vary linearly with composition. With successive decreasein fo2, garnet synthesized on the Ps 33 bulk composition movestoward the grossular end member with simultaneously increasingalmandine component; concomitantly the hercynite component ofthe coexistent magnetite increases. The fo2-T-Pfluid relations were determined by employing mineralmixtures of synthetic epidote and its high temperature equivalentin subequal proportions. Equilibrium was demonstrated for thereactions (1) epidote (Ps 33) = anorthite+grandite+FeOx+quartz+ fluid, and (2) epidote (Ps 25) (+quartz) = garnet38+anorthite+magnetitc+fluid.With fo2 defined by the HM buffer, epidote (Ps 33) is stableup to 748 °C, 5 kb, 678 °C, 3 kb, and 635 °C, 2kb Pfluid. With fo2 defined by the NNO buffer, the epidote (Ps25) high temperature stability limit is reduced about 100 °Cat 5kb Pfluid. At slightly lower fo2, than defined by the QFMbuffer, epidote is not stable at any temperatures; the assemblagehedenbergite+anorthite+garnet38+fluid replaces epidote in thepresence of excess quartz. Combined with previously determined equilibria for prehnite,andradite, and hedenbergite, isobaric fo,-T relations were furtherinvestigated by chemographic analysis interrelating the phasesprehnite, epidote, grandite, hedenbergite, wollastonite, anorthite,and magnetite in the system CaO-Fe2O3-Al2O3-SiO2-H20. Such analysisallowed the construction of a semi-quantitative petrogeneticgrid applicable to natural parageneses in low µCO2 environments,and the delineation of the low temperature stability limit ofepidote as a function of fo2. Enlargement of the epidote stabilityrange toward both high and low temperatures with increasingfo2, is consistent with widespread occurrences of epidote inlow- and mediumgrade metamorphic rocks.  相似文献   

11.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

12.
The major mineral assemblages of the metabasites of the Omoiji-Nagasawaarea in central Shikoku are hematite+epidote+chlorite+actinolite,riebeckitic actinolite+epidote+chlorite, epidote+chlorite+actinolite,and pumpellyite+epidote+chlorite+actinolite. The constituentminerals are often heterogeneous and assemblages in the fieldof a thin section sometimes do not obey the phase rule, butif grains apparently in non-equilibrium with others are excludedand domains of chemical equilibrium are appropriately chosenthe assemblages approximately obey the phase rule. The stability of hematite, pumpellyite, and epidote associatedwith chlorite and actinolite can be dealt with in terms of aternary system with appropriate excess phases. By fixing theFe2+/(Fe2+ +Mg) ratio of chlorite, it is dealt with in termsof stability relations in the system Ca2Al3Si3O12(OH)–Ca2AlFe2Si3O12(OH)with excess chlorite, actinolite, quartz, and controlled PH2O.The maximum and minimum Fe3+ contents of epidote in this modelsystem are determined by hematite+epidote+chlorite+actinoliteand pumpellyite+epidote+chlorite+actinolite assemblages. Themaximum Fe3+ of the three phase assemblage epidote+chlorite+actinoliteis insensitive to temperature, but the minimum Fe3+ contentof epidote is sensitive to temperature and can be used to definethe metamorphic grade by a continuous quantity related to temperature.The phase relations expected for the model system are in goodagreement with the parageneses of the Sanbagawa terrain in centralShikoku and offer an explanation to the rule of Miyashiro &Seki (1958a) that the compositional range of epidote enlargeswith increasing temperature. The model also makes it possibleto estimate semi-quantitatively the temperature range in whichthe assemblage pumpellyite+epidote+chlorite+actinolite is stable.The possible maximum range is about 120 ?C, but the assemblageis stable in metabasite only for about 90 ?C. The higher temperaturelimit of the pumpellyite-actinolite facies defined by the disappearanceof pumpellyite in metabasite corresponds to the temperatureat which epidote with Fe3+/(Fe3+ +Al) = 0.10 0.15 coexistswith pumpellyite, actinolite, and chlorite. The compositions of epidotes in the metabasites of the Omoiji-Nagasawaarea cluster around Fe3+/(Fe3+ +Al) = 0.33. The grade of thisarea is close to the lower temperature stability limit of thepumpellyite+epidote+chlorite+actinolite assemblage.  相似文献   

13.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

14.
The mineral assemblages of greenschist to amphibolite faciesmetabasites may usually be represented in a system of principalcomponents: CaO-Al2O3-(Fe2O3)-FeO-MgO-Na2O-SiO2-C02-H2O Assemblages co-existing with quartz, ‘albite’, ‘epidote’and a fluid of restricted composition, may be shown by projectionin a CAFM subsystem from ‘epidote’ onto an extendedAFM plane. This projection is analogous to the Thompson projectionfor pelites and is particularly useful in displaying the effectsof Fe/Mg and Al substitution in the silicates as well as incorporatingCaO; it is illustrated by plotting assemblages from the SouthernAlps of New Zealand and the Scottish Highlands and demonstrateschanges occurring with grade in the assemblages. Some commonisograds and facies boundaries are seen to be strongly dependenton bulk rock composition. In some cases MnO must be consideredas an additional component. A model of Psolid=Pfluid, where the fluid is composed of CO2+H2Ois consistent with many greenschist to amphibolite facies metabasicassemblages. Natural assemblages indicate this fluid phase tohave restricted mobility. Theoretical consideration of mineralreactions resulting from increasing XCO2 in conjunction withdata from natural mineral assemblages, leads to the distinctionof five principal types of assemblage which may be expectedas a function of varying XCO2. Recognition of these assemblagetypes provides a useful guide to relative XCO2 during metamorphism.  相似文献   

15.
The study of the alpine metamorphism of three suites of Fe-Timetagabbros occurring in the western Alps ophiolites has showna set of reactions governed by T, P, XH2O, and diffusion. T-Pestimates point to 350?50?C at a minimum of 9–10 kb forthe Queyras blueschist rocks and to 450–500 ?C at a minimumof 12–13 kb for the Lanzo and Rocciavr` eclogitized rocks.These variations are the result of different T-P-time trajectoriesduring subduction/obduction events of alpine age. In the Fe-Timetagabbros, little-deformed volumes showing a crystallizationhistory controlled by local equilibrium are bounded by mylonites.Water-poor and water-rich volumes alternate during eclogitizationof the Rocciavr? suite. The persistence in the little-deformedrocks of prealpine metastable relics, of corona structures andof chemical gradients, demonstrates that a complete high pressureequilibration is inhibited by slow reaction kinetics and slowdiffusion. Only in the mylonites has the catalytic effect ofdeformation favoured an approach to bulk-rock metamorphic equilibration.In the eclogitized coronitic rocks the apparent O2, releasefrom the alteration of the magmatic opaques plays an importantrole in reaction rates; increasing extent of eclogitizationmay be enhanced either by the release of free O2 from the rocks,or by a process in which new H2O formed by the combination ofoxygen with hydrogen introduced into the system.  相似文献   

16.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

17.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

18.
In situ eclogitic schist lenses occur in the coherent low-gradeepidote-zone Ward Creek metabasite unit of the Central Franciscanbelt. They contain almandine garnet, clinopyroxene, and rutile.They have slightly higher Mn content (0–5–1–0wt.%) than the coexisting Type III metabasites (0–12–0–25wt%) which contain epidote + glaucophane + actinolite + chlorite+ omphacite + quartz + sphene ? aragonite? lawsonite ? pumpellyite+ albite. The in situ eclogitic schists (130–140 Ma) canbe distinguished from older tectonic eclogites (150–160Ma) in Ward Creek as follows: (1) they are medium grained, whereasType IV tectonic eclogites are coarse grained; (2) they haveunaltered spessartine-rich idioblastic (0–4–10 mm)garnets, whereas Type IV tectonic eclogites have larger xenoblasticto hypidiomorphic spessartine-poor garnets which were corrodedand chloritized along the rim during retrograde metamorphism;(3) clinopyroxenes are chloromelanite in in situ eclogitic schistsbut omphacite in Type IV tectonic eclogites; (4) barroisiticamphiboles occur both as inclusions in garnets and as matrixminerals in Type IV tectonic eclogites but not in in situ eclogiticschists; (5) albite is present in in situ eclogitic schistsbut not in Type IV tectonic eclogites; and (6) the estimatedP-T condition of in situ eclogitic schists is 290 ?C < T<350 ?C, P = 8–9 kb, whereas that of Ward Creek Type IVtectonic eclogites is 500?C< r<540?C, P< 10–11–5kb. Medium-grained eclogites occur as individual blocks in WardCreek; they are different from Type IV tectonic eclogites butare very similar to in situ eclogitic schists. They have unalteredidioblastic garnet with high almandine and spessartine content(Alm47Sp23Gr20Py10), and they have chloromel-anitic clinopyroxeneand quartz but no barroisite. Paragonite is also stable in theseeclogites. The blocks formed at 380 ?C< r<400?C, and 9–5kb<P< 14 kb. They are presumably in situ eclogites formedat the highest-temperature part of the Ward Creek metabasiteunit and may be younger than Type IV tectonic eclogites. Such low-temperature occurrences of eclogitic assemblages aredue to the compositional effect on reactions between blueschistand eclogite that are insensitive to pressure and shift towardslower temperatures as bulk-rock MnO content and XFe/(Fe+Mg)increase. The Mn/(Mn + Fe) ratio of bulk rock is an importantfactor in controlling the P-T positions of these reactions attemperatures below 450 ?C, whereas the Fe/(Fe + Mg) ratio ofbulk-rock becomes important at temperatures higher than 450?C.  相似文献   

19.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

20.
Pumpellyite from four-phase assemblages (pumpellyite + epidote + prehnite + chlorite; pumpellyite + epidote + actinolite + chlorite; pumpellyite + epidote + Na-amphibole + chlorite, together with common excess phases), considered to be low variance in a CaO-(MgO + FeO)-Al2O3-Fe2O3 (+Na2O + SiO2+ H2O) system, have been examined in areas which underwent metamorphism in the prehnite-pumpellyite, pumpellyite-actinolite and low-temperature blueschist facies respectively. The analysed mineral assemblages are compared for nearly constant (basaltic) chemical composition at varying metamorphic grade and for varying chemical composition (basic, intermediate, acidic) at constant metamorphic conditions (low-temperature blueschist facies). In the studied mineral assemblages, coexisting phases approached near chemical equilibrium. At constant (basaltic) bulk rock composition the MgO content of pumpellyite increases, and the XFe3+ of both pumpellyite and epidote decreases with increasing metamorphic grade, the Fe3+ being preferentially concentrated in epidote. Both pumpellyite and epidote compositions vary with the bulk rock composition at isofacial conditions; pumpellyite becomes progressively enriched in Fe and depleted in Mg from basic to intermediate and acidic bulk rock compositions. The compositional comparison of pumpellyites from high-variance (1–3 phases) assemblages in various bulk rock compositions (basic, intermediate, acidic rocks, greywackes, gabbros) shows that the compositional fields of both pumpellyite and epidote are wide and variable, broadly overlapping the compositional effects observed at varying metamorphic grade in low-variance assemblages. The intrinsic stability of both Fe- and Al-rich pumpellyites extends across the complete range of the considered metamorphic conditions. Element partitioning between coexisting phases is the main control on the mineral composition at different P-T conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号