首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project.  相似文献   

2.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

3.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

4.
《Continental Shelf Research》1999,19(9):1143-1159
The Oder river discharge into the Pomeranian Bight of the Baltic Sea was investigated in a combined study using satellite data, numerical modelling and shipborne measurements. The aim was to understand the dynamical processes forming the freshwater distribution patterns during the prevailing winds. From an analysis of typical distribution patterns of the river discharge in relation to the main wind directions and in comparison to seasonal wind statistics, the two main transport directions were determined. The prevailing westerly winds produce an onshore transport and a downwind coastal jet which transports the river water along the Polish coast, in certain cases over a distance of 300 km to the Gdansk Bay. During a period of stable westerly winds in June 1994, the calculated time scale for a water transport over 250 km corresponded to the observed time of 12 d. In spring, the period of maximum river runoff, easterly winds dominate and transport occurs along the German coast into the Arkona Sea. The river water is guided by upwelling processes in front of the Polish coast. During occasional north-easterly winds stable plumes form in front of the Swine river mouth; this occurred in May 1991 for several days. The numerical model showed that the stability of the plume is caused by an interaction between the alignment of the coast, the large-scale circulation in the north, the buoyancy of the freshwater and the Coriolis effect. The underlying anticyclonic eddy is indicated by warm rings in a high resolution Landsat Thematic Mapper scene. From the different datasets the range of the spatial and temporal scales of a stable plume were determined. The volume varied between 0.14 and 0.9 km3, and the suspended matter and chlorophyll load between 1120 and 7200 t and 2.8 and 18 t, respectively. These values are important for ecological budget calculations in turnover process studies.  相似文献   

5.
Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ∼36°S), often gives rise to a buoyant coastal current (the ‘Plata plume’) that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ∼32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.  相似文献   

6.
Huijie Xue  Yi Du 《Ocean Dynamics》2010,60(2):341-357
A high-resolution coastal ocean model was developed to simulate the temporal/spatial variability of the Kennebec–Androscoggin (K–A) river plume and the circulation in Casco Bay. The model results agree favorably with the moored and shipboard observations of velocity, temperature, and salinity. The surface salinity gradient was used to distinguish the plume from the ambient coastal water. The calculated plume thickness suggests that the K–A plume is surface trapped. Its horizontal scales correlate well with Q 0.25, where Q is the volume discharge of the rivers. Directional spreading is affected by the wind with the upwelling favorable wind transporting the plume water offshore. Both the wind and the tide also enhance mixing in the plume. The inclusion of a wetting-and-drying (WAD) scheme appears to enhance the mixing and entrainment processes near the estuary. The plume becomes thicker near the mouth of the estuary, the outflow velocity of the plume is weaker, and the radius of the river plume shrinks. The flow field in the model run with the WAD is noisier, not only in shallow areas of Casco Bay but also in the plume and even on the shelf. We speculate that the WAD processes can affect much larger areas than the intertidal zones, especially via a river plume that feeds into a coastal current.  相似文献   

7.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

8.
Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.  相似文献   

9.
A three-dimensional primitive-equation model is used to simulate the Long Island Sound (LIS) outflow for a 1-year (2001) period. The model domain includes LIS and New York Bight (NYB). Tidal and wind forcing are included, and seasonal salinity and temperature variations are assimilated. The model results are validated with the HF radar, moored acoustic Doppler current profiler (ADCP), and ferry-based ADCP observations. The agreement between simulated and observed flow patterns generally is very good. The difference in seasonal mean currents between the model and moored ADCP is about 0.01 m/s; the correlation of dominant velocity fluctuations between the model and HF radar is 0.83; and the difference in mean LIS transport between the model and shipboard ADCP is about 5%. However, the model predicts a prominent tidally generated headland eddy not supported by the HF radar observation. The model sensitivity study indicates that the tides, winds, and ambient coastal front all have important impact on the buoyant outflow. The tides and winds cause stronger vertical mixing, which reduces the surface plume strength. The ambient coastal front, on the other hand, tends to enhance the plume.  相似文献   

10.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

11.
To investigate how salinity changes with abrupt increases and decreases in river discharge, three surveys were conducted along six sections around the Yellow River mouth before, during and after a water regulation event during which the river discharge was increased from ∼200 to >3000 m3 s−1 for the first 3 days, was maintained at >3000 m3 s−1 for the next 9 days and was decreased to <1000 m3 s−1 for the final 4 days. The mean salinity in the Yellow River estuary area during the event varied ∼1.21, which is much larger than its seasonal variation (∼0.50) and interannual variation (∼0.05). Before the event, a small plume was observed near the river mouth. During the event, the plume extended over 24 km offshore in the surface layer in the direction of river water outflow. After the event, the plume diminished in size but remained larger than before the event. The downstream propagation of the plume (as in a Kelvin wave sense) was apparent in the bottom layer during the second survey and in both the surface and bottom layers during the third survey. The plume sizes predicted by the formulas from theoretical studies are larger than those we observed, indicating that factors neglected by theoretical studies such as the temporal variation in river discharge and vertical mixing in the sea could be very important for plume evolution. In addition to the horizontal variation of the plume, we also observed the penetration of freshwater from the surface layer into the bottom layer. A comparison of two vertical processes, wind mixing and tidal mixing, suggests that the impact of wind mixing may be comparable with that of tidal mixing in the area close to the river mouth and may be dominant over offshore areas. The change in Kelvin number indicates an alteration of plume dynamics due to the abrupt change in river discharge during the water regulation event.  相似文献   

12.
《Continental Shelf Research》2005,25(9):1097-1114
South of the eastern end of Long Island (Montauk Point) along the Eastern U.S. coast, a coastal density front forms between the buoyant outflow plume of the Long Island Sound (LIS) and the denser shelf waters offshore. During a 2-day cruise in April 2002, measurements of the density and velocity structure of this front were obtained from high-resolution CTD and ADCP data. Transects show the front intersecting the bottom inshore of the 30 m isobath and shoaling offshore. Variability in the location of the front is small offshore of the 40 m isobath, yet tidal excursions of the front along the bottom are significant (5 km) inshore of this depth.The frontal structure of the LIS plume was similar to observations of bottom-trapped coastal density fronts and shelf break fronts. A coastal jet in the along front direction was the main feature of the mean velocity field and was found to be in thermal wind balance with the mean density field. Stronger than expected offshore velocities near the surface, most likely a result of wind forcing, were the only exception to these similarities. In addition, analysis of temperature and salinity gradients along isopycnals gives evidence of secondary cross-frontal circulation and detachment of the bottom boundary layer. Characteristics of the LIS plume are used to evaluate recent analytical models of bottom-trapped coastal density fronts and bottom-advected plume theory, finding good agreement.  相似文献   

13.
Secondary flows induced by the blocking effect of a river plume on a transverse upwelling are investigated in a microtidal region of freshwater influence (ROFI). A nested version of the SYMPHONIE primitive-equation free-surface model for 3-D baroclinic coastal flows has been developed for the Rhône ROFI. The main characteristics of the model are a generalized sigma coordinate system in finite differences, using a time splitting for external and internal modes and high-order numerical advection schemes for density fields in combination with an modified turbulence closure scheme. The nesting system consists of two grids forced by the high-resolution ALADIN model atmospheric data. The coarse grid of 3 km resolution for the whole Gulf of Lions allows the forcing of the Liguro-Provençal large-scale current when the fine mesh of 1-km resolution is centred on the river mouth of the Grand Rhône. Documented field experiments from the Biodypar 3 field campaign performed during March 1999 are used for validation. Numerical results, CTD profiles and a SPOT TSM visible image are in good agreement concerning the shape and structure of the river plume. Other coastal flow features can be observed from satellite imagery. Computations of realistic situations recover these main secondary structures. Complementary process-oriented runs give an explanation of how the coastal upwelling induced by an inhomogeneous offshore wind is destabilized by the combination of the river plume and along-shelf current-blocking effects. In the end, a factor-separation analysis provides evidence that the locally non-linear effects in momentum contribute to the occurrence of secondary vortices.Responsible Editor: Phil Dyke  相似文献   

14.
In May and June of 1990 we explored the hydrographic variability of the Delaware Estuary and the adjacent inner shelf with shipboard instruments. We found significant three-dimensional density variability both within the estuary and on the shelf. We found weak vertical stratification but strong transverse variability within the estuary, with denser water concentrating in the center of the estuary and two branches of lighter water near both shores. On the shelf, the buoyant estuarine water forms a southward flowing coastal current in the direction of Kelvin wave phase propagation (downstream). ADCP observations and thermal wind calculations indicate a flow of 10–20 cm s−1 downstream. Both the width of the coastal current and the magnitude of horizontal density gradients undergo substantial variations along the shelf.  相似文献   

15.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

16.
Coastal mesoscale eddies were evidenced during a high-frequency radar campaign in the Gulf of Lions (GoL), northwestern Mediterranean Sea, from June 2005 to January 2007. These anticyclonic eddies are characterized by repeated and intermittent occurrences as well as variable lifetime. This paper aims at studying the link between these new surface observations with similar structures suggested at depth by traditional acoustic Doppler current profiler measurements and investigates the eddy generation and driving mechanisms by means of an academic numerical study. The influence of the wind forcing on the GoL circulation and the eddy generation is analyzed, using a number of idealized configurations in order to investigate the interaction with river discharge, buoyancy, and bathymetric effects. The wind forcing is shown to be crucial for two different generation mechanisms: A strong northerly offshore wind (Mistral) generates a vortex column due to the bathymetric constraint of a geostrophic barotropic current, which can surface after the wind relaxes; a southerly onshore wind generates a freshwater bulge from the Rhône river discharge, which detaches from the coast and forms a well-defined surface anticyclonic eddy based on buoyancy gradients. These structures are expected to have important consequences in terms of dispersion or retention of biogeochemical material at local scales.  相似文献   

17.
Coastal plumes resulting from the continuous discharge of brackish or fresh river water are common features of continental and shelf seas. They are important for several aspects of the coastal environment, and can influence the local socio-economy to some degree. It is known from many studies that the evolution of plumes depends on various factors, such as the local bathymetry, hydrodynamics and meteorological conditions; most of these works; however, have focused on medium to large-scale rivers, while the smaller-scale discharges commonly found in the microtidal environments of the Mediterranean Sea have been less studied. This paper is centred on the behaviour of a freshwater plume arising from one of such outflows, in terms of both the physical configuration of the waterbody and the characteristics of the main driving mechanisms (discharge rate and wind stress). The modelled cases correspond to an open shallow bay, limited at one end by a large headland, and into which a typical Mediterranean waterway discharges. This particular setup is representative of a number of different bays existing on the Eastern Spanish coast. The numerical results highlight the large influence of the bay's topography on the river plume's extension and inner structure.  相似文献   

18.
The characteristics of chromophoric dissolved organic matter (CDOM) were studied in Hudson Bay and Hudson Strait in the Canadian Arctic. Hudson Bay receives a disproportionately large influx of river runoff. With high dissolved organic matter (DOM) concentrations in Arctic rivers the influence of CDOM on coastal and ocean systems can be significant, yet the distribution, characteristics and potential consequences of CDOM in these waters remain unknown. We collected 470 discrete water samples in offshore, coastal, estuarine and river waters in the region during September and October 2005. Mixing of CDOM appeared conservative with salinity, although regional differences exist due to variable DOM composition in the rivers discharging to the Bay and the presence of sea-ice melt, which has low CDOM concentrations and low salinity. There were higher concentrations of CDOM in Hudson Bay, especially in coastal waters with salinities <28<28, due to river runoff. Using CDOM composition of water masses as a tracer for the freshwater components revealed that river runoff is largely constrained to nearshore waters in Hudson Bay, while sea-ice melt is distributed more evenly in the Bay. Strong inshore–offshore gradients in the bio-optical properties of the surface waters in the Hudson Bay cause large variation in penetration of ultraviolet radiation and the photic depth within the bay, potentially controlling the vertical distribution of biomass and occurrence of deep chlorophyll maxima which are prevalent only in the more transparent offshore waters of the bay. The CDOM distribution and associated photoprocesses may influence the thermodynamics and stratification of the coastal waters, through trapping of radiant heating within the top few meters of the water column. Photoproduction of biologically labile substrates from CDOM could potentially stimulate the growth of biomass in Hudson Bay coastal waters. Further studies are needed to investigate the importance of terrestrial DOM in the Hudson Bay region, and the impact of hydroelectric development and climate change on these processes.  相似文献   

19.
The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.  相似文献   

20.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号