首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The effect of employing flux adjustments on the climatic response of an idealized coupled model to an imposed radiative forcing is investigated with two coupled models, one of which employs flux adjustments. A linear reduction (to the planetary longwave flux) of 4 W/m2 is applied over a 70 y period and held constant thereafter. Similar model responses are found (during the initial 70 y period) for global-scale diagnostics of hemispheric air temperature due to the nearly linear surface-air temperature response to the radiative forcing. Significant regional scale differences do exist, however. As the perturbation away from the present climate grows, basin-scale diagnostics (such as meridional overturning rates) begin to diverge between flux adjusted and non-flux adjusted models. Once the imposed radiative forcing is held constant, differences in global mean air temperature of up to 0.5 °C are found, with large regional-scale differences in air temperature and overturning rates within the North Atlantic and Southern Ocean. Two additional experiments with the flux adjusted model (beginning from points further along the control integration) suggest that the elimination of much of the coupling shock before the radiative forcing is applied leads to results slightly closer to the non-flux adjusted case, although large differences still persist. In particular a dipole structure indicating an enhanced warming within the Pacific sector of the Southern Ocean, and cooling within the Atlantic sector is not reproduced by the flux adjusted models. This disparity is intimately linked to the Southern Ocean overturning cell along with the flux adjustments employed as well as the drift arising from coupling shock. If a similar form of sensitivity exists in more realistic coupled models, our results suggest: (1) perturbation experiments should not be undertaken until after the coupled model control experiment is carried out for several hundred years (thereby minimizing the coupling shock); (2) care should be exercised in the interpretation of regional-scale results (over the ocean) in coupled models which employ flux adjustments; (3) care should also be taken in interpreting even global-scale diagnostics in flux adjusted models for large perturbations about the present climate. Received: 15 November 1996 / Accepted: 4 June 1997  相似文献   

2.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   

3.
J. Egger 《Climate Dynamics》1997,13(4):285-292
 Flux correction schemes are used in order to suppress the drift of coupled ocean atmosphere models. This technique is tested for a simple box model of the climate system. Two “perfect” models of the ocean and the atmosphere are available. These are coupled to form an ocean-atmosphere model representing the true climate system. This climate system is simulated by a climate model which is also constructed by coupling those two perfect models. This time, however, both models are run first separately as models of the atmosphere and the ocean. In that case, “observations” from the climate system are prescribed at the ocean surface in the uncoupled models. It is assumed that these observations are imperfect. A drift results, when these models are coupled to form an ocean-atmosphere stimulation model. A flux adjustment scheme is implemented to remove this drift. It is argued that the merits and shortcomings of the flux correction technique can be assessed more clearly this way than by coupling imperfect models as is done normally. Sensitivity tests are performed where either radiation parameters are changed or a salt anomaly is implanted. Model parameters are chosen such that the ocean has a thermally direct circulation in the unperturbed climate state. It is found that the flux correction technique is performing satisfactorily as long as the imposed perturbations are small enough so that the ocean circulation does not change its sense. If, however, the model climate is close to the transition to an indirect circulation, then the flux correction technique is unreliable. The predictions of the coupled model with flux correction may deviate substantially from the response of the climate system in that case. Received: 4 December 1995/Accepted: 15 October 1996  相似文献   

4.
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.  相似文献   

5.
Variability in annual mean circulation in southern high latitudes   总被引:1,自引:0,他引:1  
 Using a hierarchy of climate models together with observations from gridded analyses, I examine the atmosphere-only and coupled ocean-atmosphere variability in the general circulation for the region south of 40 °S. The variability in mean sea level pressure (MSLP) is well simulated by the coupled models. A complication is that the difference between the two analyses used for verification is comparable to the analysis-model differences. An increase in variability is seen within the hierarchy of model runs although even a model without interannual variations in sea surface temperatures (SSTs) captures most of the observed variability. The temporal variation in MSLP in southern high latitudes has a white spectrum consistent with “random” forcing by weather events and a decoupling from oceanic “integration”. In contrast, the spatial pattern of MSLP variability shows large-scale structure that is consistent between observations and various models, even without interannual variation in SSTs. This shows that the models are sufficiently skillful to reproduce the pattern of observed variability and suggests that the pattern of variability is a characteristic of the land-sea distribution and topography. Received: 18 December 1996/Accepted: 23 May 1997  相似文献   

6.
The energy cycle characterizes basic aspects of the physical behaviour of the climate system. Terms in the energy cycle involve first and second order climate statistics (means, variances, covariances) and the intercomparison of energetic quantities offers physically motivated “second order” insight into model and system behaviour. The energy cycle components of 12 models participating in AMIP2 are calculated, intercompared and assessed against results based on NCEP and ERA reanalyses. In general, models simulate a modestly too vigorous energy cycle and the contributions to and reasons for this are investigated. The results suggest that excessive generation of zonal available potential energy is an important driver of the overactive energy cycle through “generation push” while excessive dissipation of eddy kinetic energy in models is implicated through “dissipation pull‘’. The study shows that “ensemble model” results are best or among the best in the comparison of energy cycle quantities with reanalysis-based values. Thus ensemble approaches are apparently “best” not only for the simulation of 1st order climate statistics as in Lambert and Boer (Clim Dyn 17:83–106, 2001) but also for the higher order climate quantities entering the energy cycle.  相似文献   

7.
An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called “Erik” simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39±0.11 K for a doubling of CO2.  相似文献   

8.
The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ~20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection.  相似文献   

9.
利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。  相似文献   

10.
 The possible future impact of anthropogenic forcing upon the circulation of the Mediterranean, and the exchange through the Strait of Gibraltar is investigated using a Cox-type model of the Mediterranean at 0.25° × 0.25° resolution, forced by “control” and “greenhouse” scenarios provided by the HadCM2 coupled climate model. The current structure of the Mediterranean forced by the “control” climate is compared with observations: certain aspects of the present circulation are reproduced, but others are absent or incorrectly represented. Deficiencies are most probably due to weaknesses in the forcing climatology generated by the climate model, so some caution must be exercised in interpreting the enhanced greenhouse simulation. Comparison of the control and greenhouse scenarios suggests that deep-water production in the Mediterranean may be reduced or cease in the relatively near future. The results also suggest that the Mediterranean outflow, may become warmer and more saline, but less dense, and hence shallower. The volume of the exchange at the Strait of Gibraltar seems to be relatively insensitive to future climate change, however. Our results indicate that a parameterisation of Gibraltar exchange and Mediterranean Outflow Water (MOW) production may be able to provide adequate representation of the changes we observe for the purposes of the current generation of climate models. Received: 10 August 1998 / Accepted: 11 October 1999  相似文献   

11.
Bryan C. Weare 《Climate Dynamics》2013,41(7-8):2165-2177
Teleconnections associated with warm El Niño/southern oscillation (ENSO) events in 20 climate model intercomparison project 5 (CMIP5) models have been compared with reanalysis observations. Focus has been placed on compact time and space indices, which can be assigned a specific statistical confidence. Nearly all of the models have surface temperature, precipitation and 250 hPa geopotential height departures in the Tropics that are in good agreement with the observations. Most of the models also have realistic anomalies of Northern Hemisphere near-surface temperature, precipitation and 500 hPa geopotential height. Model skill for these variables is significantly related to the ability of a model to accurately simulate Tropical 250 hPa height departures. Additionally, most models have realistic temperature and precipitation anomalies over North America, which are linked to a model’s ability to simulate Tropical 250 hPa and Northern Hemisphere 500 hPa height departures. The skills of temperature and precipitation departures over the Northern Hemisphere and North America are associated with the ability to realistically simulate realistic ENSO frequency and length. Neither horizontal nor vertical resolution differences for either the model atmosphere or ocean are significantly related at the 95 % level to variations in El Niño simulation quality. Overall, recent versions of earlier models have improved in their ability to simulate El Niño teleconnections. For instance, the average model skills of temperature and precipitation for the Tropics, Northern Hemisphere and North America for 11 CMIP5 models are all larger than those for prior versions.  相似文献   

12.
G. M. Flato 《Climate Dynamics》2004,23(3-4):229-241
The simulation of sea-ice in global climate models participating in the Coupled Model Intercomparison Project (CMIP1 and CMIP2) is analyzed. CMIP1 simulations are of the unpertubed control climate whereas in CMIP2, all models have been forced with the same 1% yr–1 increase in CO2 concentration, starting from a near equilibrium initial condition. These simulations are not intended as forecasts of climate change, but rather provide a means of evaluating the response of current climate models to the same forcing. The difference in modeled response therefore indicates the range (or uncertainty) in model sensitivity to greenhouse gas and other climatic perturbations. The results illustrate a wide range in the ability of climate models to reproduce contemporary sea-ice extent and thickness; however, the errors are not obviously related to the manner in which sea-ice processes are represented in the models (e.g. the inclusion or neglect of sea-ice motion). The implication is that errors in the ocean and atmosphere components of the climate model are at least as important. There is also a large range in the simulated sea-ice response to CO2 change, again with no obvious stratification in terms of model attributes. In contrast to results obtained earlier with a particular model, the CMIP ensemble yields rather mixed results in terms of the dependence of high-latitude warming on sea-ice initial conditions. There is an indication that, in the Arctic, models that produce thick ice in their control integration exhibit less warming than those with thin ice. The opposite tendency appears in the Antarctic (albeit with low statistical significance). There is a tendency for models with more extensive ice coverage in the Southern Hemisphere to exhibit greater Antarctic warming. Results for the Arctic indicate the opposite tendency (though with low statistical significance).A list of the CMIP modeling groups is included in the Acknowledgements section.  相似文献   

13.
The ability of atmospheric general circulation models (AGCMs), that are forced with observed sea surface temperatures (SSTs), to simulate the Indian monsoon rainfall (IMR) variability on interannual to decadal timescales is analyzed in a multimodel intercomparison. The multimodel ensemble has been performed within the CLIVAR International “Climate of the 20th Century” (C20C) Project. This paper is part of a C20C intercomparison of key climate time series. Whereas on the interannual timescale there is modest skill in reproducing the observed IMR variability, on decadal timescale the skill is much larger. It is shown that the decadal IMR variability is largely forced, most likely by tropical sea surface temperatures (SSTs), but as well by extratropical and especially Atlantic Multidecadal Oscillation (AMO) related SSTs. In particular there has been a decrease from the late 1950s to the 1990s that corresponds to a general warming of tropical SSTs. Using a selection of control integrations from the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3), it is shown that the increase of greenhouse gases (GHG) in the twentieth century has not significantly contributed to the observed decadal IMR variability.  相似文献   

14.
The 1990 and 1991 ablation seasons over Greenland are simulated with a coupled atmosphere-snow regional climate model with a 25-km horizontal resolution. The simulated snow water content allows a direct comparison with the satellite-derived melt signal. The model is forced with 6-hourly ERA-40 reanalysis at its boundaries. An evaluation of the simulated precipitation and a comparison of the modelled melt zone and the surface albedo with remote sensing observations are presented. Both the distribution and quantity of the simulated precipitation agree with observations from coastal weather stations, estimates from other models and the ERA-40 reanalysis. There are overestimations along the steep eastern coast, which are most likely due to the “topographic barrier effect”. The simulated extent and time evolution of the wet snow zone compare generally well with satellite-derived data, except during rainfall events on the ice sheet and because of a bias in the passive microwave retrieved melt signal. Although satellite-based surface albedo retrieval is only valid in the case of clear sky, the interpolation and the correction of these data enable us to validate the simulated albedo on the scale of the whole Greenland. These two comparisons highlight a large sensitivity of the remote sensing observations to weather conditions. Our high-resolution climate model was used to improve the retrieval algorithms by taking more fully into account the atmosphere variability. Finally, the good agreement of the simulated melting surface with the improved satellite signal allows a detailed estimation of the melting volume from the simulation.  相似文献   

15.
The coupling of optimal economic growth and climate dynamics   总被引:1,自引:0,他引:1  
In this paper, we study optimal economic growth programs coupled with climate change dynamics. The study is based on models derived from MERGE, a well established integrated assessment model (IAM). We discuss first the introduction in MERGE of a set of “tolerable window” constraints which limit both the temperature change and the rate of temperature change. These constraints, obtained from ensemble simulations performed with the Bern 2.5-D climate model, allow us to identity a domain intended to preserve the Atlantic thermohaline circulation. Next, we report on experiments where a two-way coupling is realized between the economic module of MERGE and an intermediate complexity “3-D-” climate model (C-GOLDSTEIN) which computes the changes in climate and mean temperature. The coupling is achieved through the implementation of an advanced “oracle based optimization technique” which permits the integration of information coming from the climate model during the search for the optimal economic growth path. Both cost-effectiveness and cost-benefit analysis modes are explored with this combined “meta-model” which we refer to as GOLDMERGE. Some perspectives on future implementations of these approaches in the context of “collaborative” or “community” integrated assessment modules are derived from the comparison of the different approaches.  相似文献   

16.
By using IAP 9L AGCM, two sets of long-term climatological integration have been per-formed with the two different interpolation procedures for generating the daily surface boundary conditions. One interpolation procedure is the so-called “traditional” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the observed monthly mean values, however the observed monthly means cannot be preserved after interpolation. The other one is the “new” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the "artificial" monthly mean values which are based on, but are dif-ferent from the observed ones, after interpolating with this new scheme, not only the observed monthly mean values are preserved, the time series of the new generated daily values is also more consistent with the observation. Comparison of the model results shows that the differences of the globally or zonally averaged fields between these two integrations are quite small, and this is due to the compensating effect between the different regions. However, the differences of the two patterns (the global or regional geographical distributions), are quite significant, for example, the magni-tude of the difference in the JJA mean rainfall between these two integrations can exceed 2 mm/day over Asian monsoon regions, and the difference in DJF mean surface air temperature can also exceed 2oC over this region. The fact that the model climatology depends quite strongly on the method of prescribing the daily surface boundary conditions suggests that in order to validate the climate model or to predict the short-term climate anomalies, either the " new* interpolation scheme or the high frequency surface boundary conditions (e.g., daily or weekly data instead of the monthly data) should be introduced. Meanwhile, as for the coupled model, the daily coupling scheme between the different component cli?mate models (e.g., atmospheric and oceanic general circulation models) is preferred in order to partly eliminate the “climate drift” problem which may appear during the course of direct coupling.  相似文献   

17.
基于CMIP5模式集合预估21世纪中国气候带变迁趋势   总被引:3,自引:0,他引:3  
本文选用耦合模式比较计划第五阶段(CMIP5)数据,结合英国东英吉利大学气候研究中心(CRU)气温和降水资料,分析了中国20世纪末期气候带分布;以此为基础,模拟并分析了RCP2.6和RCP8.5两种情景下中国21世纪中期和末期气候带的变迁趋势。结果表明:CMIP5模式集合数据能较好地模拟出中国区域气温和降水空间分布形态,CRU分析资料描述的气候带分布与柯本气候分类吻合较好。21世纪中期、末期与20世纪末期相比,RCP2.6情景下,气候类型及分布变化并不显著,RCP8.5情景下,热夏冬干温暖型分别增加了28.2%(中期)、86.9%(末期),草原气候分别增加了24.1%(中期)、49.4%(末期)。热夏冬干冷温型到21世纪末期有明显的增加,但苔原气候和沙漠气候类型所占比重减少。  相似文献   

18.
CMIP5全球气候模式对上海极端气温和降水的情景预估   总被引:5,自引:1,他引:4  
基于国际耦合模式比较计划第五阶段(Coupled Model Intercomparison Project Phase 5,以下简称CMIP5)28个模式的数值模拟结果和1981~2010年华东和上海气温和降水观测数据,评估了该28个气候模式对华东和上海气温和降水的模拟能力,并预估了RCP4.5(Representative Concentration Pathway 4.5)情景下上海2021~2030年极端气温和降水气候的变化趋势和不确定性。结果表明:与观测值相比,模式对华东和上海年平均气温的模拟大多均值偏高、方差偏低;对年总降水量的模拟大多均值偏高,但方差以华东偏高、上海偏低为主;26个模式的气温变化趋势和12个模式的降水变化趋势与观测值相同。选出8个模式的预估结果表明:与2001~2010年相比,2021~2030年上海冬天极端低温的出现日数(冷夜日数)呈减少趋势,不确定性最小;夏天暖夜日数呈增加的趋势,不确定性较小;其他极端气温事件的变化趋势则存在较大的不确定性,冷夜指标的不确定性最大。强降水发生日数和强降水的强度都呈现增加的趋势,且不确定性较小。  相似文献   

19.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

20.
This paper presents an evaluation of the simulated coupling between cloud base height (CBH) and surface fluxes over selected Coordinated Enhanced Observing Period (CEOP) reference stations by five regional climate models as part of a transferability intercomparison experiment. The model results are compared with station data obtained during the first phase of the CEOP measuring campaigns. The models gave a credible simulation of both diurnal and seasonal cycles of cloud base height and surface variables over the stations. However, the models exhibited some difficulty in reproducing the diurnal and seasonal temperatures over the tropical stations. The study used principal component analysis to show that three factors account for most of the variability in the observed and simulated data and to investigate the coupling between cloud base height and surface fluxes in the data. In the observations, CBH is well coupled with the surface fluxes over Cabauw, Bondville, Lamont, and Berms, but coupled only with temperature over Lindenberg and Tongyu. All models but GEMLAM simulate substantial coupling between CBH and surface fluxes at all stations; GEMLAM does not couple CBH with surface fluxes, but with surface temperature and specific humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号