首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

2.
The Narryer Gneiss Complex of the Yilgarn Block is a key segment of the Western Australian Precambrian Shield. It is a regional granulite facies terrain comprised of predominantly quartzo-feldspathic gneisses derived from granitic intrusions c. 3.6–3.4 Ga old. Granulite facies metamorphism occurred c. 3.3 Ga ago, and conditions of 750–850°C and 7–10 kbar are estimated for the Mukalo Creek Area (MCA) near Errabiddy in the north. The P–T path of the MCA has been derived from metamorphic assemblages in younger rocks that intruded the gneisses during at least three subsequent events, and this path is supported by reaction coronas in the older gneisses. There is no evidence for uplift immediately following peak metamorphism of the MCA, and a period of isobaric cooling is inferred from the pressures recorded in younger rocks. Pressures and temperatures estimated from metadolerites, which intruded the older gneisses during ‘granite–greenstone’tectonism at about 2.6 Ga and during early Proterozoic thrusting show that the Errabiddy area remained in the lower crust, although it was probably reheated during the younger events. Isothermal uplift to upper crustal levels occurred at c. 1.6 Ga ago, and was followed by further deformation and patchy retrogression of high-grade assemblages. The effects of younger deformation, cooling and reheating can be discerned in the older gneisses, but as there has been no pervasive deformation or rehydration, the minerals and microstructures formed during early Archaean granulite facies metamorphism for the most part are retained. The MCA remained in the lower crust for about 1700 Ma following peak metamorphism and some event unrelated to the original metamorphism was required to exhume it. Uplift occurred during development of the Capricorn Orogen, when some 30–35 km were added to the crust beneath the Errabiddy area. The recognition of early Proterozoic thrusting, plus crustal thickening, suggests that the Capricorn Orogen is a belt of regional compression which resulted from convergence of the Yilgarn and Pilbara Cratons.  相似文献   

3.
ABSTRACT The Bunger Hills, East Antarctica, experienced a low-pressure granulite facies orogenic event during the Proterozoic. The stable coexistence of the S1 foliation-parallel M1 assemblages, garnet-cordierite-spinel-ilmenite and garnet-sillimanite-spinel-ilmenite-rutile, in quartz-bearing pelitic gneisses is evidence for metamorphic peak pressures of around 4 kbar during M1, at temperatures of about 800°C. The growth of massive reaction coronas of garnet and cordierite around hercynitic spinel and iron-titanium oxides during M2 is evidence for the destabilization of the M1 assemblages during compression. Thermodynamic calculations on the M2 assemblages indicate formation pressures of 6–7 kbar at temperatures of about 750°C. Thus, the gneisses from the Bunger Hills indicate about 2 kbar or more of compression during minimal cooling. Such a P-T path is different from that of many other Proterozoic terranes which are characterized by isobaric cooling or decompression. A large charnockite body, which is undeformed, was intruded at ~950°C, towards the end of compression. The low pressures during M1 can be best explained by metamorphism at mid-crustal levels in thin continental crust in thin lithosphere above a thermal perturbation in the underlying asthenosphere. We suggest that the compression during cooling was a result of gravitational backflow in which the action of body forces between adjacent normal thickness crust and the thin crust of the Bunger Hills is 'switched on’by the thermal perturbation. Within such a model, the timing of intrusion of the charnockite exposed in the Bunger Hills is consistent with its generation by partial melting during the metamorphic maximum of the lowermost crust.  相似文献   

4.
Granulites exposed in the Reinbolt Hills, East Antarctica, are part of the extensive Late Proterozoic granulite complex of East Antarctica, which includes the Rauer Group to the east and the northern Prince Charles Mountains to the west. The deformation history includes three pervasive deformation phases. No chemical or mineralogical distinction between these phases has been detected and this is interpreted to be the result of complete re-equilibration at the end of the third deformation phase. Two late deformation phases post-date the metamorphism and record a medium-temperature cooling path. A short segment of the P–T path of these rocks was inferred from mineral reactions that occurred during these late deformation phases. The path passes from 800°C, 7 kbar to 690°C, 5 kbar, indicating strong decompression, which is typical of a thrust-dominated crustal thickening followed by rapid erosion or extensional collapse.  相似文献   

5.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

6.
Abstract The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.  相似文献   

7.
Sapphirine has been found in two types of magnesian, metabasic lenses from tectonite zones within the Central Gneiss Belt of the south-west Grenville Province, Canada. The first type (association I) comes from a lenticular mafic lens within highly tectonized anorthosite, the second type (association II) comes from meta-eclogitic pods with foliated amphibolite rims. In each case the sapphirine-bearing assemblages record a wealth of reaction textures. The primary mineralogy in association II is represented by high alumina clinopyroxene, garnet and kyanite ± plagioclase and records pressures of around 14-16 kbar; in association I the primary mineralogy is represented by plagioclase, two pyroxenes and possibly olivine but here the equilibrium pressure is unknown.
The host gneisses equilibrated at approximately 8 to 10 kbar and 700-750°C by continuous cation exchange reactions during and after the culmination of the Grenvillian orogeny at 1.16-1.0 Ga. It is unlikely that the higher pressures recorded in the meta-eclogitic pods represent an earlier high-pressure metamorphism as the pods are restricted to shear zones. A tectonic mode of emplacement into a crust undergoing granulite facies metamorphism is more likely. Sapphirine formed by discontinuous decompression reactions; in association II this involved a reaction between garnet and kyanite and resulted in the formation of magnesian granulite facies assemblages. At the same time primary clinopyroxene became much less aluminous by evolving plagioclase. Pressures and temperatures from coexisting phases, that are believed to have equilibrated at the same time as sapphirine formation, are estimated as 11 to 12 kbar and 750°C. These probably represent the peak conditions for granulite facies metamorphism in the south-west Grenville Province.  相似文献   

8.
The Okiep Copper District, part of the 1.2–1.0 Ga high-grade terrane in western Namaqualand, is composed of a mid-Proterozoic supracrustal sequence and several pre- to post-orogenic intrusive suites affected by two high-grade events (M2a/M2b, M3) of Kibaran and one low-grade event (M4) of Pan-African age. Peak assemblages in quartz-bearing pelites are characterized either by garnet+cordierite coexisting with sillimanite/biotite, or by biotite+sillimanite±garnet; a difference controlled by bulk composition and variation in water activities (0.1–0.7) during dehydration melting. Maximum P–T conditions were reached during M2a coevally with the major deformational event (D2a) and are estimated at 750–820  °C and 5–6  kbar. A counterclockwise P–T  path is indicated by regionally occurring pseudomorphs of sillimanite after andalusite and by prograde reaction textures preserved as relics in M2a porphyroblasts. Two stages of retrograde metamorphism are distinguished: M2a garnet+cordierite-bearing assemblages were retrogressed to biotite+sillimanite+quartz (M2b) along discontinuous foliation planes and shear zones (D2b). Retrograde M3 corona assemblages formed at similar P–T  conditions (580–660  °C and 5.8±0.5  kbar) to the M2b assemblages but M3 crystallization postdates penetrative D2 deformation, intrusion of 1.06 Ga granitoids and formation of associated W–Mo deposits. It is concluded that: (a) Kibaran high-grade metamorphism in the Okiep Copper District is thermally punctuated and (b) reaction textures documenting apparent isobaric cooling of this low- P high- T  terrane must be interpreted with caution.  相似文献   

9.
Silica-deficient sapphirine-bearing rocks occur as an enclave within granulite facies Proterozoic gneisses and migmatites near Grimstad in the Bamble sector of south-east Norway (Hasleholmen locality). The rocks contain peraluminous sapphirine, orthopyroxene, gedrite, anthophyllite, sillimanite, sapphirine, corundum, cordierite, spinel, quartz and biotite in a variety of assemblages. Feldspar is absent.
Fe2+/(Fe2++ Mg) in the analysed minerals varies in the order: spinel > gedrite ≥ anthophyllite ≥ biotite > sapphirine>orthopyroxene > cordierite.
Characteristic pseudomorph textures indicate coexistence of orthopyroxene and sillimanite during early stages of the reaction history. Assemblages containing orthopyroxene-sillimanite-sapphirine-cordierite-corundum developed during a high-pressure phase of metamorphism and are consistent with equilibration pressures of about 9 kbar at temperatures of 750–800°C. Decompression towards medium-pressure granulite facies generated various sapphirine-bearing assemblages. The diagnostic assemblage of this stage is sapphirine-cordierite. Sapphirine occurs in characteristic symplectite textures. The major mineralogical changes can be described by the discontinuous FMAS reaction: orthopyroxene + sillimanite → sapphirine + cordierite + corundum.
The disequilibrium textures found in the Hasleholmen rocks are characteristic for reactions which have been in progress but then ceased before they run to completion. Textures such as reaction rims, symplectites, partial replacement, corrosion and dissolution of earlier minerals are characteristic of granulite facies rocks. They indicate that, despite relatively high temperatures (700–800° C), equilibrium domains were small and chemical communication and transport was hampered as a result of dry or H2O-poor conditions.  相似文献   

10.
Abstract Ganguvarpatti is part of a Precambrian terrane characterized by granulite facies rocks, including charnockites, mafic granulites, sapphirine-bearing granulites, leptynites and gneisses. A sequence of reactions deduced from the multiphase reaction textures provide information on the metamorphic history of this area, as they formed in response to decompression during uplift. Geothermobarometry and constraints from reaction textures define a segment of a P–T path traversed by the granulites of Ganguvarpatti. Near-peak metamorphic conditions of c. 800°C and 8 kbar were succeeded by a symplectitic stage at a significantly lower pressure ( c. 700°C and 4.5 kbar), documenting a nearly isothermal decompression P–T path and rapid uplift ( c. 12 km) followed by cooling. The presence of many fluid inclusions of extremely low density in the charnockites is consistent with a nearly isothermal uplift path. Attainment of a maximum pressure of c. 8 kbar indicates c. 27 km depth of burial during metamorphism. This would imply a total crustal thickness of c. 65–70 km at 2.6–2.5 Ga. Such a profound crustal thickness and a clockwise decompressive P–T path is interpreted as a consequence of tectonic thickening of crust, accomplished by collision tectonics of the southern granulite terrane against the Dharwar craton along the Palghat–Cauvery shear zone via northward subduction.  相似文献   

11.
Abstract High-pressure granulite-facies gneisses in the NE Ox inlier in NW Ireland have undergone extensive Caledonian retrogression. In the local area of Slishwood, however, reworking was negligible and the gneisses (psammites, semipelites, pelites, metabasites and ultramafites) preserve evidence of P–T changes at high grade which mainly post-date pre-Caledonian polyphase deformation. Temperatures reached 850–900°C (based on garnet-clinopyroxene geothermometry and the presence of mesoperthite) during and after decompression from earlier eclogite-facies conditions (inferred from textural evidence of plagioclase release in sieve-textured augite). Subsequent cooling at high pressure is inferred from the unequivocal replacement of sillimanite by kyanite.
A Sm–Nd mineral isochron (gt–cpx–plag–WR) of 605 ± 37 Ma is taken to date a point on the cooling path, and confirms the hitherto suspected pre-Caledonian age of the high-grade metamorphism. Geochemical and Sm–Nd isotopic data indicate that the protoliths were probably late Proterozoic arkosic sediments and tholeiites. Following metamorphism they apparently came to reside near the base of the crust where they slowly cooled. The eventual exhumation of these gneisses is attributed to Caledonian crustal imbrication, followed by rapid isostatic recovery.  相似文献   

12.
Abstract The widespread khondalite series of south-east Inner Mongolia consists largely of biotite–sillimanite–garnet gneiss and quartzo-feldspathic gneiss with some marble and mafic granulite layers. It has experienced two metamorphic events at c. 2500 and 1900–2000 Ma.
A pre-peak stage of the first metamorphism at T = 600–700°C and P > 6–7 kbar is recognized by the relict amphibolite facies assemblage Ky–Grt–Bt–Pl–Qtz and 'protected'inclusions of biotite, hornblende, sodic plagioclase and quartz in garnet or orthopyroxene. The peak stage, with T = c. 800 ± 50°C and P 8–10 kbar, is characterized by the widespread granulite facies assemblages Sil–Grt–Bt–Kfs–Pl–Qtz in gneiss and Opx–Cpx–Pl ± Hbl ± Grt in granulite. The P–T–t path suggests that the supracrustal sequence was buried in the lower crust by tectonic thickening during D1–D2.
The beginning of the second metamorphism is characterized by further temperature rise to 700°C or more at lower pressure. This stage is manifested by the appearance of cordierite after garnet, fibrolite (Sil2) after biotite in gneiss and transformation of Hbl1 into Opx2 and Cpx2 in granulite. Coronas of symplectitic Opx2 + Pl2 surrounding Grt1 and Cpx1 in mafic granulite are interpreted as products of near-isothermal decompression. The P–T–t path may be related tectonically to waning extension of the crust by the end of the early Proterozoic.  相似文献   

13.
Abstract Regionally distributed pelitic granulites in the Wilson Lake region contain the assemblage sapphirine + hypersthene + sillimanite + quartz. Geochronology and geobarometry suggest it developed in early Proterozoic rocks at temperatures approaching 900°C and pressures above 10 kbar. Vein-like metasomatized rocks around a suite of mafic to ultramafic intrusions, emplaced near the peak of metamorphism about 1700 Ma ago, contain sapphirine, but these assemblages developed at temperatures near 750°C and pressures of 4.5 kbar. Both types of assemblage occur as relics in amphibolite-grade (biotite–sillimanite) migmatites.
P–T determinations indicate rapid isothermal uplift of 20 km accompanied by mafic intrusion and hydration. The metamorphic history and tectonic setting suggest exposure of deep continental crust by thrusting during continental collision, followed by essentially isothermal decompression.  相似文献   

14.
Thermodynamic regime of culmination phase of high-grade metamorphism of the Umba nappe (Lapland allochthon) was studied, and peak metamorphic monazite was dated. Based on calculation of end member reactions, the metamorphic assemblages of aluminous gneisses from the upper and lower parts of the nappe are close to equilibrium. The metamorphic conditions of the rocks are estimated to be about 800°C and 7 kbar in its upper part and 9 kbar in its lower part. The formation of orthopyroxene-sillimanite aggregates points to increasing pressure and temperature at the prograde stage of PT path, whereas cordierite rims mark the onset of decompression and cooling. The pressure difference of 2–2.5 kbar identified by thermobarometric methods between aluminous gneisses from the upper and lower parts of the Umba nappe corresponds to a depth gradient about 7.5 km, which agrees with approximate thickness of the Umba nappe. The study of the eclogitelike rocks developed after the rocks of the Paleoproterozoic Kolvitsa gabbronorite massif made it possible to trace the P-T evolution of metamorphsim: the temperature peak of granulite stage (11 kbar, 860°C) was followed by pressure increase (up to 14 kbar and more), and then decompressional cooling due to the exhumation of the Por’ya Guba nappe together with the Kolvitsa Massif. The U-Pb monazite age of 1904 ± 3 Ma obtained for aluminous gneisses from the upper part of the Umba nappe corresponds within error to the timing of metamorphic events determined from metamorphic zircon in the anorthosites of the Kolvitsa Massif (1907 ± 2 Ma) and zircon from aluminous gneisses in the melange zone (1906 ± 3 Ma). These isotopic data confirm the conclusion of simultaneous high-pressure granulite metamorphism in the upper and lower portions of the Umba nappe.  相似文献   

15.
A sequence of at least three Al2SiO5-bearing mineral assemblages are preserved in successively overprinted ductile shear zones in the Willimantic window, Connecticut. The ductile deformation, localized at and near the boundary between the Putnam-Nashoba terrane and underlying Avalon terrane is characterized by a network of anastomozing shear zones that outline metre-scale tectonic blocks of migmatitic Kfs + Sil + Gt + Bi + Pg + Qtz + Ilm + Ru gneiss. These assemblages record Acadian or older metamorphic conditions of 6 kbar, 700d? C. Mylonitic gneisses in shear zones that define block margins were formed by reconstitution and recrystallization of the migmatitic gneiss. The reconstituted rocks exhibit relict Ky + St + Grt (+Pl + Bt + Qtz + Rt + Ilm) assemblages and require a minimum pressure for the Ky-Str grade metamorphism of 8.5 kbar. Kyanite in block margins is widely replaced by sillimanite, and locally by andalusite, during a period of post-Alleghanian ductile deformation. The interiors of blocks do not record this sequence of polymorphs. The pattern of reconstitution is accounted for by localization of strain along block margins within a regionally extensive terrane-bounding fault zone. Strain provided the activation energy for recrystallization and retrograde mineral reactions. The P-T conditions of post-Alleghanian ductile deformation evolved from 600d? C and 6 kbar to 550d? C and 3 kbar. The occurrence of Ky + Str-bearing assemblages, overprinting Acadian Kfs + Sil-bearing assemblages and subsequently overprinted by Alleghanian sillimanite- and andalusite-bearing assemblages, along with reset hornblende 40Ar/39 Ar mineral ages from Mississippian to Permian, requires a prograde Alleghanian metamorphism of rocks previously metamorphosed during the Acadian. Thus, mineral assemblages from gneisses in the Willimantic fault zone retain evidence of a protracted tectonothermal evolution that included high-grade Acadian orogenesis, tectonic loading resulting from Alleghanian collision of Avalon with North America, and tectonic exhumation in Permo-Triassic time. The c.3-kbar pressure decrease between prograde and retrograde Alleghanian metamorphic conditions corresponds to 10 km of crust that must have been tectonically excised from the base of the Putnam-Nashoba terrane cover sequence following Alleghanian orogenesis in south-eastern New England.  相似文献   

16.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   

17.
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520  Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13  kbar and T  =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7  kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10  kbar and T  = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7  kbar and T  = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event.  相似文献   

18.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

19.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

20.
Metamorphic mineral assemblages and textures from Early Palaeozoic continental margin rocks in north-western Newfoundland indicate that different structural levels have contrasting metamorphic histories. Rocks of the East Pond Metamorphic Suite, which represent the older, structurally lower level of the margin, experienced an early high-pressure–low-temperature stage of metamorphism (10–12 kbar minimum, 450–500°C) which produced eclogite in mafic dykes and phengite–garnet assemblages in pelites. This was overprinted by higher temperature–lower pressure amphibolite facies metamorphism (700–750°C, 7–9 kbar minimum) which produced complex symplectic textures in rocks of all compositions. Rocks of the Fleur de Lys Supergroup, which were deposited in the stratigraphically higher levels of the rifted margin, reached pressures of 7–8.5 kbar at about 450°C during the early stages of metamorphism, overprinted by assemblages which indicate maximum temperatures of 550–600°C at about 6.5 kbar. The metamorphic history of both units is interpreted to be the result of thermal relaxation following initial burial of a continental margin by overriding thrust sheets. Since there is no evidence that maximum pressures or temperatures within the Fleur de Lys Supergroup were ever as high as those reached in the East Pond Metamorphic Suite, these rocks may have followed parallel, 'nested' P–T–t paths, with the more deeply buried East Pond Metamorphic Suite subjected to greater thermal relaxation effects. Quantitative modelling of P–T–t paths is not possible with the present data, owing to both large uncertainties in P–T estimates, and in the time of metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号