首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The concept of aquifer vulnerability is certainly useful in the field of groundwater protection. Nevertheless, within the scientific community, the definition of vulnerability is still under debate and lacks standardisation. As a consequence, the methods for evaluating the vulnerability degree are numerous and often lead to conflicting results. Thus, in this study, three methods that are commonly used in groundwater vulnerability assessments due to their easy application (namely DRASTIC, GOD and TOT) were utilised in four areas of the Piedmont region (NW Italy). The results obtained by the different methods were compared and correlated with the nitrate concentrations in the groundwater. The aims of the study were (i) to evaluate the effectiveness of the adopted methods and their comparability, (ii) to discuss the limits of the intrinsic vulnerability methods and (iii) to verify the applicability of nitrate as a tracer in the assessment of groundwater vulnerability or explain the reasons why it is not applicable. It was observed that the three intrinsic vulnerability methods are not able to uniquely identify the most or least vulnerable areas. Additionally, the comparison of the intrinsic vulnerability indexes only occasionally showed a reasonable correlation. Furthermore, there was no clear correlation between the vulnerability indexes and nitrate concentrations in the groundwater. These results could be explained by several reasons: (1) the methods are mostly based on the level of groundwater protection provided by the overlaying lithologies and do not consider the physical processes occurring in the aquifer; (2) the intrinsic vulnerability methods only consider vertical pathways for contaminants, but a pre-existing contaminant could be present in the aquifer; (3) groundwater nitrate concentrations are affected by the nitrate input and surplus; and (4) nitrates are subject to physical and biological attenuation in aquifers and cannot necessarily be considered stable tracers in the assessment of groundwater vulnerability.  相似文献   

2.
The study of the intrinsic vulnerability of groundwater resources to pollution is an effective tool to control their quality degradation and contribute to their protection. It is used to delimit the vulnerable zones which do not withstand a large flow of pollutants introduced from the soil surface. Three methods of assessing the intrinsic vulnerability of groundwater: DRASTIC (Depth to water table, Recharge, Aquifer, Soil type, Topography, Impact of zone vadose, Hydraulic conductivity), DRSTI, and GOD (Groundwater occurrence, Overall aquifer class and Depth of water table) coupled with a geographic information system (GIS) are applied to the groundwater of Beni Amir, and they are compared in order to adopt the method which better characterizes the vulnerability of the aquifer to pollution. The validation of this application was made by measurements of the nitrate levels in the aquifer. Because the pollution of groundwater, in this plain, is a direct consequence of agricultural activities characterized by an intensive fertilizer application. The results clearly show that the rate of the coincidence, between the measured nitrate concentrations and the different classes of vulnerability of three methods, is 81.81, 54.54, 72.72, and 27.27%, respectively, for methods DRASTIC (classification of Engel et al. (Int Assoc Hydrol Sci Publi 235:521–526, 1996)), DRASTIC (classifications of Aller et al. (1987)), DRSTI, and GOD. Of this rate of coincidences, the DRASTIC method, with the classification of Engel et al. (Int Assoc Hydrol Sci Publi 235:521–526, 1996), allows a finer assessment and turns out the most representative of the study area.  相似文献   

3.
Geological and geographical parameters including land use, stratigraphic structure, groundwater quality, and N- and O-isotopic compositions of nitrate in groundwater were investigated to elucidate the mechanism of groundwater pollution by NO3 ? in the agricultural area of Katori, Chiba, Japan. An aquitard distributed in the western part of the study area has produced two unconfined aquifers. The average concentrations of NO3 ? and dissolved oxygen (DO) were high in the aquifer above the aquitard (7.5 and 7.6 mg/L, respectively) and in the aquifer of the eastern part of the study area that was not influenced by the aquitard (11.9 and 7.8 mg/L, respectively); however, the levels in the aquifer under the aquitard were relatively low (2.2 and 3.7 mg/L, respectively). The δ15N and δ18O values of NO3 ? generally increased exponentially in the groundwater that flowed into the aquifer under the aquitard as the concentration of NO3 ? decreased, although this decrease in NO3 ? also occasionally occurred without isotopic changes. These results indicated that the aquitard prevented the penetration of NO3 ?, DO, and gaseous O2. Under the aquitard, denitrification and dilution with unpolluted water that entered from natural forested areas reduced the NO3 ? concentrations in the groundwater. The major sources of NO3 ? in groundwater in the study area were estimated to be NH4-chemical fertilizer, livestock waste, and manure.  相似文献   

4.
This paper describes the implementation of process-based models reflecting relative groundwater nitrate vulnerability of the shallow alluvial Lower Savinja Valley (LSV) aquifer in Slovenia. A spatially explicit identification of the potentially vulnerable priority areas within groundwater bodies at risk from a chemical point of view is being required for cost-effective measures and monitoring planning. The shallow LSV unconfined aquifer system consists of high-permeable Holocene and middle- to low-permeable Pleistocene gravel and sand, with a maximum thickness of about 30 m, mainly covered by shallow eutric fluvisoils or variously deep eutric cambisoil. The hydrogeological parameters, e.g. the depth to the groundwater, hydrological role of the topographic slope, etc. usually used in different point count schemes are, in the case of the lowland aquifer and shallow groundwater, spatially very uniform with low variability. Furthermore, the parametric point count methods are generally not able to illustrate and analyze important physical processes, and validation of the results is difficult and expensive. Instead of a parametric point count scheme, we experimentally used the Arc-WofE extension for weights-of-evidence (WofE) modelling. All measurement locations with a concentration higher than the value of 20 mg NO3 per litre of groundwater have been considered as training points (173), and the three process-based models generalized output layers of groundwater recharge (GROWA), nitrate leached from the soil profile (SWAT) and groundwater flow velocity (FEFLOW), served as evidential themes. The technique is based on the Bayesian idea of phenomena occurrences probability before (prior probability) and after consideration of any evidential themes (posterior probability), which were measured by positive and negative weights as an indication of the association between a phenomena and a prediction pattern. The response theme values describe the relative probability that a 100 × 100 m spatial unit will have a groundwater nitrate concentration higher than the training points’ limit values with regard to prior probability value. The lowest probability of groundwater nitrate occurrence is in the parts of the LSV aquifer, which are known as anoxic condition areas with very likely denitrification processes. The cross-validation of the dissolved oxygen and dissolved nitrate response theme confirmed the accuracy of the groundwater nitrate prediction. The WofE model results very clearly indicate regional groundwater nitrate distribution and enable spatial prediction of the probability for increased groundwater nitrate concentration in order to plan the groundwater nitrate reduction measures and optimize the programme for monitoring the effects of these measures.  相似文献   

5.
The identification of sources and behavior of contaminants is important to control and manage groundwater quality of aquifer systems in urban areas. In this study, hydrogeochemistry of major constituents and stable isotope ratios of nitrate in groundwater were determined to identify contamination sources and transformation processes occurring in soils and deeper groundwater of Beijing with intense human activities. The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from groundwater samples indicate at least three potential sources of nitrate in groundwaters at Beijing. Stable isotope analyses from this study site, which has atmospheric, chemical fertilizer and human waste nitrate sources, provide a tool to distinguish nitrate sources in a confined aquifer where concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Beijing are wastewater and denitrification process occurred specially in the Central area. NO3–N and cation and anion concentrations (Ca2+, Mg2+ Cl? and SO 4 2 ) showed strong correlations indicating that they originated from the same sources. This study demonstrates that a thorough evaluation of hydrodynamic and hydrochemical parameters with dual isotopes of NO3 ? constitutes an effective approach for identifying sources and transformation processes of NO3 ? in deeper groundwater systems.  相似文献   

6.
Groundwater samples from boreholes and springs in the unconfined Chalk aquifer of Cambridgeshire were analysed for N2O and other N species on a monthly basis between March 1995 and February 1996. Land use in the study area is devoted to intensive arable farming supported by the application of N-based fertilisers. All groundwater samples were strongly oversaturated with N2O, with concentrations ranging from 13 to 320 times the saturation concentration with respect to air-equilibrated water.A very good positive correlation between N2O and NO3 concentrations was obtained (r2=0.80), but no relationship was established between N2O and NO2 or NH4 concentrations. Concentrations of N2O and NO3 increased continuously in the direction of groundwater flow, with molar net gain ratios of NO3 to N2O varying between 204 and 410. These ratios are within the range reported in previous studies of nitrification. Corresponding dissolved O2 levels in groundwater samples were moderately undersaturated, further indicating that the main source of N2O in Chalk groundwater in Cambridgeshire is probably nitrification. No consumption of N2O seems to take place within the unconfined aquifer with degassing to the atmosphere apparently being the sole mechanism for N2O removal from groundwater.An estimated N2O flux of around 0.05 kg N2O ha−1 a−1 from the sampled groundwater discharge points to the atmosphere was calculated for the study area. This figure is likely to be much higher, since it does not account for diffuse N2O emissions from groundwater seepage areas or any degassing from the unconfined aquifer through the unsaturated zone. Both these processes will contribute substantially to the total aerial flux, thus suggesting that groundwater may be a significant contributor to the global N2O budget.  相似文献   

7.
The recharge sources and groundwater age in the Songnen Plain, Northeast China, were confirmed using environmental isotopes. The isotopic signatures of the unconfined aquifers in the southeast elevated plain and the north and west piedmont, cluster along local meteoric water lines (LMWLs) with a slope of about 5. The signature of source water was obtained by the intersection of these LMWLs with the regional meteoric water line (RMWL). This finding provides evidence that the recharge water for these areas originate from the Changbai Mountains and the Low and High Hingan Mountains, respectively. Groundwater in the unconfined aquifer in the low plain yields a LMWL with a slope of 4.4; its nitrate concentration indicates the admixture of irrigation return flow. The δ-values of the unconfined aquifer in the east elevated plain plot along the RMWL, reflecting recharge by local precipitation. The mean residence time of groundwater in these aquifers is less than 50?years. However, the 14C age of the groundwater in the confined Quaternary aquifer ranges from modern to 19,500?years, and in the Tertiary confined aquifer from 3,100 to 24,900?years. Modern groundwater is mainly recharged to the Quaternary confined aquifer on the piedmont by local precipitation and lateral subsurface flow.  相似文献   

8.
The chemical and hydrodynamic characteristics of groundwater in deltaic regions are strongly influenced by the complex stratigraphy of these areas, caused by the continuously varying depositional environments associated with their recent hydrographic evolution. As a case study, the eastern sector of the Po River plain, northern Italy, has been investigated to understand the quality of the available groundwater resources. Based on the analysis of hydrochemical and isotopic data, the recharge characteristics, the groundwater residence time and the aquifer vulnerability are defined. The results show significant qualitative degradation of the unconfined aquifer due to the shallow depth to water, while in the underlying confined aquifer, a hydrochemical facies of Ca–HCO3 type prevails. The spatial variation and relationship between oxygen-18 and deuterium determine: firstly, hydraulic separation of the two hydrogeological units; secondly, direct infiltration of local precipitation to the unconfined aquifer; thirdly, the occurrence of waters originating in the Alps and locally from the Apennines, pervading the confined aquifer. The tritium results suggest local mixing between the superficial waters and the confined aquifer, occurring along the palaeo-river channels. This increases the pollution vulnerability of the confined hydrogeological unit within the plain, which is the only natural groundwater resource exploited for water supply.  相似文献   

9.
The sulfate pollution in an agriculturally used watershed has been investigated with respect to the transport in the saturated zone and the development of sulfate in the unsaturated zone. Besides of other sources such as acid wet and dry deposition or sulfate input by agricultural activities, most of the sulfate originates from oxidation of pyrite by either NO3 or O2. High sulfate concentrations coincided with high nitrate leaching caused by plowing of former grassland or by vegetable crop residues and with former wet lands that have become dry. By using soil water concentration data and maps showing the extension of former wetlands and grassland as well as agricultural land use, it was possible to delineate regions of high sulfate input. The transport of sulfate in the aquifer was analyzed with a modified version of the USGS MOC model, which takes into account the nonlinearity of the underlying equation describing unconfined groundwater flow. The calibration of the transport model showed good agreement between the estimated and modeled sulfate input rates. A prediction of future sulfate concentrations in the aquifer was feasible by using worst-case parameters.  相似文献   

10.
Identifying the origin of nitrate is important for the control and management of groundwater quality in aquifer systems. In the southern Apennines (Italy), the Mount Vulture volcanic aquifer is a large and valuable resource of potable and mineral water supply. Unfortunately, signs of anthropogenic impact, especially nitrogen contamination, have recently become evident. In this study, and for the first time, stable isotope ratios (δ15N and δ18O) of NO3 ? were determined in groundwater to identify their origins and evaluate the presence of transformation processes. The Mount Vulture groundwaters are meteoric in origin, as demonstrated by measurements of δD and δ18O, and can be divided into two distinct areas based on their NO3 ? content. In the southeastern area, characterized by active agricultural land use, the high NO3 ? content and the δ15N–NO3 isotopic values are due to anthropogenic contamination (inorganic fertilizer). In groundwaters from the western area, the NO3 ? contents below 4 mg/L and the δ15N–NO3 values can be associated at organic soil N. Evidence for local denitrification may be assumed in a few groundwater samples of the western area showing relatively heavy δ15N values and low concentrations of nitrate. Finally, the low measured δ18O values indicate that nitrification occurred in both investigated areas.  相似文献   

11.
High nitrate concentrations, above the WHO guideline of 50 mg l−1, were observed in samples of shallow wells reaching the Yeumbeul suburb (Senegal) area groundwater. This groundwater is exploited by 7000 houses and therefore there are health implications. Correlations between parameters such as nitrate content (NO3) in the groundwater and soil water, the distance between shallow wells and family latrines, and soil water chloride (Cl) and colon bacillus content led to two possible sources of groundwater pollution: first, contamination by non impervious and shallow latrines; and second, the leaching of soil NO3 from waste organic matter carried in groundwater.  相似文献   

12.
Slurry walls are non-structural barriers that are constructed underground to impede groundwater flow or manage groundwater control problems. The study area is in the Piemonte plain (Italy), close to the River Po. Quarrying works carried out below the piezometric surface created two big quarry lakes. The local groundwater system is characterized by a lower semi-confined aquifer, which is overlain by a semi-permeable bed of clayey peat (aquitard) and an upper unconfined aquifer. Locally, the peat fades away and the granulometry of this horizon becomes silty sandy. A planned enlargement of the quarry will increase the size and depth of the quarry lakes. So the aquitard bed between the two aquifers will be damaged, creating a mixing rate of groundwater. Such a procedure would not be compatible with the presence of two municipal wells upstream from the quarries. Consequently, the installation of a vertical diaphragm (slurry wall) is recommended to separate the aquifers and to act as a filter for the groundwater flowing from the unconfined to the semi-confined aquifer. To predict the consequences caused by the installation of the vertical diaphragm separating the unconfined aquifer and the semi-confined one, a specifically adjusted finite-difference model was used. The model showed a maximum rising of the water table equal to 12 cm, just upstream of the diaphragm and for a distance of about 100 m, and a maximum lowering of 2 cm just downstream of the diaphragm. However, the slurry wall would not cause any change in the piezometric head in the area where there are municipal wells and, hence, will not have any negative effect on the functionality of the municipal wells. Moreover, the migration of water from the unconfined aquifer through the vertical diaphragm will stimulate a series of attenuation and auto-depuration processes of eventual contaminants. These processes are due to the higher crossing time that the groundwater flow takes to go through the vertical barrier (t a = 96.5 days, whereas for the horizontal semi-permeable layer t a = 9.6 days). So, the vertical diaphragm can be a resolutive element, representing a mediation and separation factor between the unconfined and the semi-confined aquifers along the border of the quarrying areas, and a protective barrier for the water quality of the quarry lake and the semi-confined aquifer.  相似文献   

13.
The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO3-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO3 in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis (3H, δ15N-NO3, δ18O-NO3, δ18O-SO4, δ34S-SO4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO3 concentrations at the ARS exhibits a manure-related δ15N and δ18O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO3 groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO3-N concentrations associated with more oxygen-limited conditions and coincident with high SO42− concentrations are related to more enriched δ15N and δ18O values in NO3 and to more depleted δ34S and δ18O values in SO42−, suggesting that denitrification coupled with pyrite oxidation is taking place. The presence of macro crystalized and disseminated pyrite especially in the Eramosa Formation, can support the occurrence of this attenuation process. Moreover, based on tritium analysis, some denitrification can occur in shallow bedrock and within relatively short residence times, associated with less permeable conditions in depth which facilitates oxygen consumption through sulfide oxidation. The role of denitrification mediated by organic carbon cannot be discarded at the study site. This study suggests that the geological configuration and particularly the presence of low permeability Eramosa Formation can play an important role on nitrate natural attenuation, which may serve as a decision factor on defining the bedrock water supply system for both domestic and municipal purposes.  相似文献   

14.
The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na–NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca–HCO3, Ca–NO3, and Na–NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L?1 NO3–N (8 meq L?1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.  相似文献   

15.
This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating (3H/3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.  相似文献   

16.
The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985–2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.  相似文献   

17.
The evaluation of the long-term effects of seawater intrusion into the aquifers due to negative water balance and nitrate pollution of drinking-water quality due to human activities requires detailed knowledge of both the transport of the chemical constituents and the geochemical processes within aquifers. Hydrogeological and hydrochemical studies in the unconfined aquifer of Malia have provided the necessary data to define the areas at increased risk from these phenomena. The solution of the second Fick's low under given boundary conditions gave an estimate of the propagation of groundwater pollution by NO3 . Additionally, in order to simulate the ion concentration changes during a period, for example a period of positive water balance or refreshening, groundwater transport and cation exchange reactions were modelled using the code PHREEQM. Received: 25 July 1997 · Accepted: 4 November 1997  相似文献   

18.
A point count index method using a well drillers log and field measurements has been developed following the DRASTIC and SINTACS procedures to map and evaluate the vulnerability of a coastal plain aquifer to surface and near surface contamination. The input parameters with the acronym CALOD include clay layer thickness (C), aquifer media character (A), lateritic layer thickness (L), overlying layer character (O) and the depth to groundwater level (D). The CALOD vulnerability potential index (CALOD index) is computed as the sum of the products of weights and ratings assigned to each of the input parameters. The CALOD index, varying between 15 and 75, is divided into four classes: high (>60), high-medium, (40–60), low-medium (20–40) and low (<20). The CALOD index is then used to produce a vulnerability potential map for the area. From the map, areas of high, high-medium and medium-low are consistent with the upper gravelly aquiferous zone while areas of medium-low and low are restricted to the deeper lower sandy aquiferous layer. The most important parameters affecting groundwater vulnerability to pollution in coastal areas include saturated thickness of the aquifer, depth to groundwater level, lateritic layer thickness and the aquifer media character. The concentration of some chemical pollution indicators (electrical conductivity, K, NO3, Cl and metal load) are relatively higher for the highly vulnerable shallower upper gravelly unit in comparison to the less vulnerable deeper sandy unit. This method is very suitable for coastal plain sand aquifers especially, where data is scare.  相似文献   

19.
To identify impacts of air pollution, sewage drainage, agricultural production, over-pumping and reservoir storage on groundwater, a field survey was conducted in the Baiyangdian catchment of the North China Plain. Major ions and water isotopes were measured. Results show that hydrological processes and hydrogeochemical evolution of shallow groundwater were greatly disturbed by human activities. Excessive pumping resulted in significant declines of groundwater levels over the study area. This also induced infiltration of surface water into groundwater. A groundwater depression cone was the conflux center of groundwater surrounded by recharge zones including alluvial fans and surface water in alluvial plain. Pumping almost was the only way to discharge groundwater. Emission of SO x and NO x contributed at least 11% of rock weathering by dissolving into infiltrating precipitation. Surface waters containing sewage replenished ambient groundwater with an average mixing ratio of 74 ± 17% due to groundwater level drawdown. As a result, groundwater had elevated concentrations of Na+ and SO4 2? with Na+ exchanged into aquifer sediments. About 29 ± 16% of Na+ was exchanged from groundwater into soil matrix. Agriculture nitrate was high only in the recharge zones. The most important result is that the transformation of the study area from a place rich in water resource into an area lack of water just took several decades with the joint action of the heavily human activities. Our study also indicates that shallow groundwater could sensitively respond to and record environmental changes.  相似文献   

20.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号